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SOFIA HISTORY

* 1965-1969 FIRST USE OF NASA AIRCRAFT FOR IR ASTRONOMY (CV-990 AND LEAR JET)
* 1969 FIRST ASTRONOMY COMMUNITY INTEREST IN BOEING 747
* 1972 GREENSTEIN REPORT ON "LARGE STRATOSPHERIC TELESCOPE"
* 1974 FIRST RESEARCH FLIGHT OF KUIPER AIRBORNE OBSERVATORY (KAO)
INITIAL STUDIES ON LARGER SYSTEM
* 1975-1979 PLANNING FOR "LARGE AIRBORNE TELESCOPE" (LAT) CONTINUES AT LOW LEVEL
* 1980 CONCEPT SUMMARY FOR LAT DEVELOPED BY KAO STAFF
CAMERON PAPER, "THREE METER TELESCOPE ON A 747SP PLATFORM" PRESENTED
* 1983-1984 SUCCESS OF IRAS SHOWS NEED FOR FOLLOW-UP/EXPLOITATION
+ 1984 "AD HOC" ADVOCACY GROUP OF IR ASTRONOMERS FORMED FOR LAT

R. HILDEBRAND PAPER ON LAT PRESENTED
"SOFIA PRELIMINARY FEASIBILITY STUDY" REPORT ISSUED AT HEADQUARTERS REQUEST

* 1985 HEADQUARTERS ALLOCATES FY86 FUNDING FOR AIRCRAFT MODIFICATION STUDY

* 1986 ARC ESTABLISHES SOFIA STUDY OFFICE, INITIATES PHASE A STUDIES
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TOP LEVEL AIRCRAFT PERFORMANCE REQUIREMENTS

A. DEPLOYMENT MISSION

FLIGHT DURATION 2 13.5 HOURS
RANGE 2 6000 N.M. WITH IFR RESERVES
FOR PAYLOAD < 125,000 LBS TOTAL

B. SCIENCE MISSION

TIMETOCLIMB <30 MIN TO FL 410 (41,000 FT)
ENDURANCE AT ALTITUDE 2 6.5 HOURS ATFL 2 410
FOR PAYLOAD <72,000 LBS TOTAL

C. OPERATIONAL EFFICIENCY

CAPABILITY FOR 2 120 SCIENCE FLIGHTS/YEAR
2 6 ENGINEERING FLIGHTS/YEAR
2 12 SCIENCE MAKEUP FLIGHTS/YEAR
2 12 PILOT PROFICIENCY FLIGHTS/YEAR

D. PLATFORM ATTITUDE ACCURACY/STABILITY

<+ 0.5° AZIMUTH (YAW) ACCURACY/STABILITY, AND ROLL/PITCH STABILITY
AT 2 FL 410 IN STABLE CRUISE/CLIMB CONDITIONS, WITH DOOR OPEN
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TOP-LEVEL TELESCOPE OPTICAL SYSTEM REQUIREMENTS

PRIMARY DIAMETER 225 m (GOAL 3.0 m) * PRIMARY COATING BARE ALUMINUM, RECOATABLE
2 TWICE/YEAR
PRIMARY F/NO. ~10 ,
+ SYSTEM EMISSIVITY < 15% AT NASMYTH FOCUS
SPECTRAL RANGE 0.3 - 1600 MICRONS
+ OPTICS TEMPERATURES WITHIN -10 AND +2K OF CAVITY
FIELD OF VIEW 2 8 ARCMIN AT F/18 SYSTEM AIR TEMPERATURE
F/RATIOS 11-18 RANGE » THERMAL TIME CONSTANT < 1 HOUR (OPTICS & STRUCTURE)
IMAGE QUALITY 80% VISIBLE ENERGY IN< 1.0 * PRIMARY TEMP DISTRIBUTION <+ 1K SPATIAL WITH PRECOOL
ARCSEC DIAMETER CIRCLE FOR
CENTRAL 2M APERTURE (POINT + SECONDARY MIRRORS AT LEAST TWO, WITH SYSTEM
SOURCE) F/RATIOS OF 13.5, 17
80% IN < 3 ARCSEC DIAMETER « TERTIARY MIRRORS TWO FLATS, ONE DICHROIC AND
CIRCLE FOR ENTIRE APERTURE ONE REFLECTING
CONFIGURATION GENERIC CASSEGRAIN TELE- DICHROIC TRANSMISSIVITY
SCOPE, WITH CASSEGRAIN 2 70% AT 0.5 MICRONS
AND NASMYTH FOCI
DICHROIC REFLECTIVITY
2 92% AT 2 10 MICRONS
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TELESCOPE SYSTEM FUNCTIONAL REQUIREMENTS SUMMARY

* POINTING STABILITY  <0.15 ARCSEC RMS * TARGET ACQUISITION  TIME TO ACQUIRE INVISIBLE TARGET
(QUIESCENT) (LONG-TERM JITTER) <30 SECONDS
< 1.0 ARCSEC RMS DEAD RECKONING ACCURACY
(OFFSET GUIDING) < 15 ARCMIN
* TELESCOPE MOTIONS ELEVATION RANGE CAPABILITY FOR AUTOMATIC
20-60° UNVIGNETTED OFFSETS (STAR TO STAR)
15-75° VIGNETTED
* INERTIAL REFERENCE  DRIFT RATE < 0.5 ARCSEC/SEC
CROSS ELEVATION AND LOS RANGE (GYRO-ONLY CONTROL)
12° (4° GOAL)
* SECONDARY MIRROR  FUNCTIONS: CHOP, ROTATE, FOCUS,
AUTOMATIC CAGING CAPABILITY FOCUS DITHER
* SLEW/NOD/SCAN 2 0.4 DEGREES/SEC MAX SLEW RATE CHOP AMPLITUDE: 2 ARCSEC - 8 ARCMIN
(OBJECT SPACE)
NOD AMPLITUDE > 20 ARCMIN
CHOP WAVEFORMS: SQUARE,
NOD/SETTLE < 2 SEC, FOR 5 ARCMIN SAWTOOTH, ARBITRARY, OFFSET
AMPLITUDE

CHOP END POSITION STABILITY < 1%
MAPPING PATTERNS: CIRCULAR, SPIRAL, OF AMPLITUDE
RECTANGULAR PATTERNS

CHOP RISE TIME
* OFFSET POINTING RANGE > 8 ARCMIN DIAMETER AT <5 MSEC FOR 1 ARCMIN AMPLITUDE
(FOCAL PLANE NASMYTH FOCUS . €7 MSEC FOR 4 ARCMIN AMPLITUDE
TRACKING) ,
ACCURACY < 1 ARCSEC CHOP FREQUENCY
1-35 Hz (1 ARCMIN)
RESOLUTION < 0.15 ARCSEC 1-10 Hz (4 ARCMIN)

SENSITIVITY: TRACK ON STAR OF Mv > 13
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STUDY OBJECTIVES

* DEVELOP KEY SUBORDINATE SUBSYSTEM REQUIREMENTS AND ERROR BUDGETS FROM TOP-LEVEL
PERFORMANCE REQUIREMENTS (REQUIREMENT FLOWDOWN AND ERROR BUDGETING)

* DEVELOP BASELINE SYSTEM AND SUBSYSTEM CONCEPTS (AND OPTIONS) USING KAO AND
EXISTING TECHNOLOGY AS STARTING POINT

*  PERFORM DETAILED TECHNICAL ANALYSES TO ESTABLISH FEASIBILITY OF ACHIEVING PERFORMANCE
REQUIREMENTS WITHIN GIVEN SYSTEM CONSTRAINTS, USING PRELIMINARY CONCEPTS

* ITERATE DESIGN CONCEPTS/DEVELOP DIFFERENT APPROACHES AS NECESSARY

* IDENTIFY TECHNOLOGY DRIVERS AND AREAS OF UNCERTAINTY OR CONCERN, REQUIRING EARLY
FOLLOW-ON EMPHASIS TO RESOLVE

* REPORT ON CONCEPTS, INCLUDING MASS/COMPLEXITY FACTORS TO ENTER COST MODELS
* ESTABLISH PRELIMINARY COST ESTIMATES, INCLUDING COST RANGE DUE TO UNCERTAINTIES
* DEFINE KEY SUBSYSTEM AND SYSTEM INTERFACES

* ESTABLISH "PROJECT POSITION" RELATIVE TO REQUIREMENTS ACHIEVABILITY, AND SUGGESTED
CHANGES TO PERFORMANCE REQUIREMENTS WHERE WARRANTED
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Ames Research Center

SOFIA OBSERVATORY CONCEPT OVERVIEW
MAJOR ELEMENTS

* AIRCRAFT SYSTEM

- BASIC AIRCRAFT, CAVITY MODIFICATION, AND EQUIPMENT AND CREW ACCOMMODATIONS

» TELESCOPE SYSTEM

- TELESCOPE ASSEMBLY: OPTICAL SUBSYSTEM, SUPPORT STRUCTURE, COUNTERWEIGHT/
INSTRUMENT MOUNT, STRUCTURAL ISOLATION

- CONSOLES AND ELECTRONICS SUBSYSTEM: PROCESSORS, CONTROLS AND DISPLAYS FOR
TELESCOPE OPERATIONS, MISSIUN MANAGEMENT, AND SCIENCE INVESTIGATION

+ GROUND SUPPORT/OPERATIONS SYSTEM

- GROUND FACILITIES, RESOURCES AND EQUIPMENT FOR TELESCOPE, AIRCRAFT, INSTRUMENT/
INVESTIGATOR, AND OPERATIONS SUPPORT

1-13
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LAYOUT FOR PERSONNEL ACCOMMODATIONS (LOPA)
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CAVITY CONCEPT - REAR VIEW AT TELESCOPE CENTERLINE
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CAVITY CONCEPT - REAR VIEW AT TELESCOPE CENTERLINE
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DATA MANAGEMENT, ACQUISITION AND COMMUNICATIONS SUBSYSTEM

* MAJOR REQUIREMENTS
- RELIABILITY/REDUNDANCY
- MODIFIABILITY
- COMMUNICATIONS (DATA AND VOICE)
- BASED ON KAO WITH UPGRADES

* CONCEPT
- DIVISION INTO MAJOR SUBSYSTEMS
- INTERCONNECTION THROUGH A LAN
- MAJOR SUBSYSTEM IDENTIFICATION:

SECONDARY MIRROR ASSEMBLY DATA CPU (WITH BACKUP)

OFFSET GUIDER (FOCAL PLANE) VIDEO SIGNAL PROCESSING

STAR TRACKER/ACQUISITION CAMERAS MISSION MANAGER

TELESCOPE INERTIAL POINTING (TIPS) NETWORK MANAGER/TEST WORK STATION
VIBRATION ISOLATION CAVITY ENVIRONMENT

TELESCOPE SUPPORT (FENCE, DOOR, ETC)) BROADBAND LAN

INVESTIGATOR SUBSYSTEM/CONSOLES VIDEO DISTRIBUTION .

HOUSEKEEPING AND DATA ACQUISITION MISCELLANEOUS PERIPHERAL EQUIPMENT
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GROUND SUPPORT/OPERATIONS SYSTEM
OPERATIONS OVERVIEW

* PHILOSOPHY:
- NASA-OPERATED WITH INTERNATIONAL COLLABORATION/INVESTIGATIONS
- INSTRUMENT/INVESTIGATION COMPATIBILITY WITH KAO AND GROUND-BASED IR
- USER-FRIENDLY AND "HUMAN ENGINEERED" FOR LONG-DURATION OBSERVATION FLIGHTS
- HIGH OPERATIONAL RELIABILITY
- SELF-CONTAINED FOR REMOTE OPERATIONS

+ GOALS
- 20 YEARLIFETIME
- 120 RESEARCH FLIGHTS PER YEAR WITH MAXIMUM OBSERVING TIME; 40 WEEKS/YEAR
- 7 DAY PER WEEK OPERATIONS
- MANAGEMENT BY CIVIL SERVICE/OPERATION BY SUPPORT SERVICE CONTRACT STAFF
- IOC IN FY 1992 FOR SCIENCE OBSERVING OPERATIONS
- APPROXIMATELY NINE MONTH SHAKE-DOWN PERIOD

» SCIENCE SELECTION
- "DEAR COLLEAGUE" LETTER
- LETTERS OF INTENT/PROPOSALS
- REVIEW AND SELECTION
- ANNOUNCEMENT OF AWARDS
- FUNDING OF U.S. OBSERVERS BY NASA GRANT
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2.1

Introduction

In 1972 the Astronomy Survey (Greenstein) Committee Report to the National Academy of Sciences
included in their "Programs of Highest Priority” a recommendation that NASA "undertake design
studies for a very large stratospheric telescope." At that time, the Agency was nearing completion of
the 91 cm diameter airborne telescope that was later to be christened the Gerard P. Kuiper Airborne
Observatory (KAO). The unqualified success of the KAO over the past thirteen years of operation,
coupled with the wealth of new infrared sources discovered by the Infrared Astronomical Satellite
(TRAS), have led to the implementation of this recommendation.

This Phase A Report describes the first step of the recommended studies. This section presents the

scientific background, the scientific potential, a comparison with other astronomy missions, and the
overall justification for such a facility.

2-2
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2.2

Perspective on Madern Astronomy

Astronomical advances of recent decades have shown that progress is based upon parallel developments
along the broadest possible front and often attained with highly specialized facilities. Distant quasars,
originally discovered because they appeared incredibly bright at radio wavelengths, were later shown
by the Einstein Observatory to be even more powerful emitters of X-radiation, and by observations
from the KAO to be powerful emitters in the infrared as well. Interstellar hydrogen molecules, first
detected in the open spaces between the stars by the ultraviolet observatories Copernicus and IUE,

have been traced into the dark regions of dusty molecular clouds through infrared observations
conducted from the KAO.

This progress on a broad front - which is typified by the results of the Airborne Program - will clearly
continue well into the 21st century, as new facilities are developed to explore the frontiers of modern
astronomy. The spectacular infrared sky maps of IRAS have revealed protoplanetary material orbiting
stars, diffuse "cirrus" clouds rising far above the central plane of the Milky Way, and an abundance of
infrared galaxies similar to those discovered from the KAO. Most of the IRAS data remain to be
exploited by further analysis and subsequent observations. NASA's Hubble Space Telescope (HST) will
probe far into the universe to provide deeper cosmological insight through ultraviolet and visible
observations far more sensitive than previously possible. The Gamma Ray Observatory (GRO) and the
AXAF (Advanced X-Ray Astrophysics Facility) will extend our ability to observe violent relativistic
processes in objects such as the nuclel of quasars, and possibly to discover new sources of high energy
radiation. The European Infrared Space Observatory (ISO) will study many of the IRAS sources, and
SIRTF (the Space Infrared Telescope Facility) will provide detailed studies of even the faintest IRAS
sources, and will permit limited surveying to much fainter flux limits than reached by IRAS.

Early in the next century, the 8 meter diameter European Far Infrared Space Telescope (FIRST) will
permit submillimeter spectroscopic studies of the interstellar medium with high angular resolution, and
subsequently the roughly 20 meter diameter Large Deployable Reflector (LDR) will sllow even higher
spatial resolution photometric and spectroscopic observations throughout the far infrared and
submillimeter domains. In the interim, a number of 10 meter class telescopes for visible, near
infrared, and millimeter wavelengths will be built at ground-based sites.

However, this impressive armada of astronomical facilities is missing an important element: a major
airborne observatory. To understand the value of such a facility, we consider below the potential for
airborne astronomy, the performance of a large airborne telescope, some science examples, and how
its capabilities compare with those of the missions cited above.
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2.3

Airharne Astronomy - Background

The KAO and its predecessor, the Learjet Observatory, are among the few astronomical observatories
which have dominated a particular wavelength region for a significant time. Among the prominent
discoveries made from the aircraft are: water in comets Halley and Wilson; rings around Uranus;
intrinsic thermal emission from Jupiter, Saturn, and Neptune; infrared emission from our galactic
center equivalent to the power of 10 million suns; locations, luminosities, and structures of obscured
young stellar objects; some 70 spectral features of atoms, molecules, and grains which are extensively
improving our understanding of the physics and chemistry of the interstellar medium (see Table 1);
"infrared" galaxies which emit orders of magnitude more energy in the far-infrared than at all other
wavelengths; an infrared bolometric correction of a factor of two for the luminosity of "normal" spiral
galaxies; and excess infrared emission of unknown origin from quasars, the most distant astronomical
objects known.

Figure 1 plots flux densities for five "classical” infrared objects in the 1-100 ym range to indicate some
of the variety of aireraft observations. (No data are shown for the band around 10 um, which is access-
ible from the ground, as is much of the 1-5 ym range.) At the shorter wavelengths, the vibrational
transitions of molecules are prominent in the gas phase, and are often manifested even when the
molecules are constituents of interstellar grains. Molecular rotational transitions, which occur at the
longer wavelengths, are typically frozen out when the molecule is locked in a solid. Thus Jupiter's
atmosphere shows strong vibrational (1-8 ym) features of ammonia and methane, and rotational (40-100
um) features of ammonia. In the spectrum of YCVn (a carbon star), we see molecular features due to
carbon-rich molecules in a circumstellar envelope. In the Kleinman-Low object (KL, a molecular cloud
with embedded invisible luminosity source) the continuum, which is due principally to re-emission of
the interior luminosity by dust grains, shows some grain features in the 4-8 ym range, but is smooth at
the longer wavelengths except for a broad absorption around 45 microns probably due to water ice.

Also indicated in Figure 1 at the longer wavelengths are atomic fine structure lines in the spectra of
KL NGC 7027 (a bright planetary nebula), and M82 (a star-burst galaxy). These lines provide important
information on abundance, density, excitation, cooling, and dynamics of the gas. Ignored in this plot is
the important spectral range 100-1000 ym. In this range both the continuum distributions and line
emissions from a variety of objects are extremely interesting. An example of particular importance to
interstellar carbon chemistry are the lines of C, C+, and CO (see Table 1).

The fundamental phenomenon underlying the great success of airborne astronomy is the transmission of
the earth's atmosphere at altitudes accessible to modern aircraft, which is compared to ground based
transmission as a function of wavelength in Figure 2. The upper plot is at a spectral resolving power of

10%, and the lower plot shows one of the poorest transmission segments of the spectrum (80-120 um) at
a resolving power of 5000.
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2.3

Airborne Astronomy - Background (contd)

The transmission from the ozone cutoff at about 0.28 microns out to about one micron is dominated by
molecular and aerosol scattering. At longer wavelengths the transmission is determined largely by
triatomic molecular absorptions, particularly carbon dioxide (which is uniformly mixed), water (which
is stratified), and ozone (which is located high above aircraft altitudes). Water is the principle culprit
in regions where the aircraft transmission greatly exceeds the mountain-top transmission. The amount
of precipitable water in the figure is 10 ym for the 14 km (aircraft) altitude and 500 ym for the 4 km
(Mauna Kea) altitude. This large difference exists because the water is located mostly below the
temperature inversion at the troposphere, which may be from roughly 30,000 to 50,000 feet altitude,
depending on latitude and season.

Another point is that most of the water vapor in the line of sight is relatively near the aircraft at
operating altitudes. The amount of water is typically reduced by a factor of two when the altitude is
increased from 41,000 to 45,000 feet. Hence some observations are only achieved by flying the
observatory at the highest possible altitude.

As seen from the upper plot, practically no work can be done from the ground throughout the 30-350
wm range. The lower plot shows that many of the absorbing water lines in this spectral range are still
saturated even at aircraft altitudes. Nevertheless, a great deal of interesting science which is
impossible from the ground is readily accomplished with an airborne telescope.

Some observations require the aircraft even at wavelengths where the transmission from the ground
appears to be good, such as the discovery of water in comets Halley and Wilson in the 1-3 ym range,
and the study of interstellar water in Orion at 1.6 mm. Other advantages of an airborne observatory
over mountain-top facilities are: (1) scintillation noise is greatly reduced at visible and ultraviolet
wavelengths, (2) the reduced temperature of a telescope operating in the low stratosphere increases
the background-limited sensitivity in the near infrared, (3) the observatory can readily be deployed to
observe targets of opportunity, and is rarely "clouded out." For example, the discovery of rings around
Uranus was made from the KAO flying off the coast of Australia by stellar photometry of an occulted
star, which was the only observation of both immersion and emersion.
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2.3

EEEBEREE (contd)

Perhaps the most striking aspect of Figure 2 is its broad wavelength range. Observations from the
KAO have actually been made at wavelengths separated by a factor of over 5000. This means that the
variety of scientific problems which can be studied from an airborne observatory is extremely diverse.

A related factor in the success of the airborne program is the extensive science community involve-
ment in it. Over 70 principal investigators and their collaborators have written more than 500 refered

.publications based on airborne observations and related studies, and more than 30 Ph.D's have been

awarded for astronomical research done from the KAO and Learjet. The annual peer review of pro-
posals typically receives requests for 3 or 4 times more flights than can be accommodated on the KAO.
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2.4 SOFIA Performance Comparison with KAQ

Table 2 summarizes the parameters expected to be achievable for SOFIA, and compares them with the
KAO. A few of these are highlighted here:

Item A.3, flights per year: It is felt by the science community that every effort should be made
to permit SOFIA to be operated at the 120 flights/year level. This rate is understood to be
practical based on considerations such as maintenance, instrument installation, crew training,
ete.

Item B.5, available f-ratios: To simplify the design of the telescope and the installation of
instruments, a single f-ratio is anticipated for SOFIA initially, with a wider range for follow-on
capability (accomplished by use of different secondary mirrors).

Item B.6, image quality of optics: this is specified to be consistent with probable seeing
limitations.

Item D.2, elevation range: The lower range for SOFIA means that sources farther south than
the galactic center will be readily accessible on flights originating at NASA Ames.

Item E.1, chopping secondary: An essential feature for SOFIA, the relatively large secondary
mirror (about 30 cm diameter) will require a well-designed chopper.

Item E.2, optical system thermal time constant: the large thermal time constant on the KAO is
a practical impediment to rapid instrument changeovers and installation optimization. On
SOFIA, the requirement of a lightweight primary should permit achieving much more rapid
cooldown prior to flight.

The science program on SOFIA would be patterned after that of the KAO. This features annual peer
review of both instrument proposals and guest investigator proposals. Roughly 30-40 teams might be
selected in any given year, with approximately half being groups with instruments. The more
sophisticated instruments may require multiple-year support during their development, but are
subsequently reviewed annually. The variety of instruments is typified by the list in Table 3. Most of
these instruments, which fly on the KAO, would require only minor modifications to fly on SOFIA.
With its expected lifetime of 20 years, SOFIA will undoubtedly support focal plane instruments with
capabilities far beyond those listed in Table 3.
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2.5

Astronomical Promise

Suitably instrumented, SOFIA will provide images or spectra of a vast variety of fundamental pheno-
mena. These might range from supernova outbursts in external galaxies to protostellar flows in young
star-forming regions within the Milky Way. A few exciting possibilities deserve particular attention:

Star formation, as currently understood, begins with contraction of a cool, dusty, gaseous region in
interstellar space. As this contraction accelerates, a compact, central condensation forms, surrounded
by an orbiting disk of matter. Isolated examples of these sources have been identified from KAO
observations of globules and other small elouds. More recently, the IRAS survey may have detected a
cluster of such young stellar sources in the Taurus cloud. Ground-based radio and near-infrared
observations generally indicate that individual protostellar objects are likely to be separated by less
than 2 to 10 seconds of arc on the sky. These separations are too small for KAO or IRAS to resolve.
With SOFIA, however, we could isolate and individually study such objects. We expect for the first
time to detect the infall of material onto the protostellar disk surrounding the centrally condensed
star. The shock produced by the gases striking the disk would heat and collisionally excite the gas
atoms and molecules causing them to radiate. The shocked regions lie at such depths within the disk
that only radiation at wavelengths longer than 100 microns is likely to escape unhindered. Fortunately,
important diagnostic spectral features, for example from carbon monoxide, atomic oxygen, and water
vapor lie at these wavelengths. A shocked protostellar accretion disk in the Taurus cloud is expected
to provide a weak signal from individual emission lines, but one that could be detected with a
spectrometer mounted at SOFIA's focal plane. In addition, SOFIA's good spatial resolution may allow
direct photometric observation of the geometry of disks in young stellar objects. Figure 3 shows the
KAO measurement of SVS 13 in NGC 1333, which has an elongated geometry suggestive of a disk. The
improvement in sensitivity and spatial resolution which SOFIA could provide would permit discrimin-
ation between thin and thick disks, determination of temperature profiles across some disks,
observation of a statistically significant number of disk-like sources, and direct observational tests of
protostellar models.

We currently have no detailed maps of astronomical sources at wavelengths between 100 and 350
microns. While the IRAS survey does not reach beyond 100 microns, SOFIA could resolve many sources
on a scale of better than 30 arc seconds at wavelengths of 200 and 350 microns. The KAO has already
established the existence of a class of sources with peak emission in this wavelength range.
Comparative studies made at radio wavelengths have frequently been carried out at comparable
angular resolution. By combining radio data with submillimeter results obtained from SOFIA, we can
gain insight into the physical conditions in extended dusty regions. From SOFIA, astronomers would
map the polarized thermal emission from cool dust, and the total power radiated in atomic fine-
structure and rotational molecular lines. These measurements provide estimates of density, temper-
ature, chemical makeup, and magnetic fields in these regions. When the combined observations are
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2.5

Astronomical Pramise (contd)

made at sufficiently high spectral resolution the lines also provide data on systematic and turbulent
motions within a cloud. Velocity-resolved spectra of the 158 micron line of C+ measured from the
KAO with a heterodyne receiver are shown in Figure 4. The source, a molecular-cloud/HII region
complex, shows two velocity components which may arise from clumps of moving gas. SOFIA would
permit mapping to detect individual clumps or ionization fronts, and would allow abundance estimates
in other objects, such as planetary nebulae or late-type stellar envelopes, which are too faint for
observations from the KAO.

Similarly, high spatial resolution mapping of the continuum and lines emitted by nuclei of obscured
external galaxies at wavelengths from 30 to 300 microns, will provide unique evidence regarding the
distribution of stellar types, the morphology of the ionized gas, and its relation to the distribution of
the dust and luminous stars. Figure 5 shows a line profile of the 88 micron 0++ line from the nucleus of
the starburst galaxy M2, and a radio map of the source with KAO and SOFIA beams superimposed.
Velocity structure in the line suggests strong variation in the emission from different components of
the source, which SOFIA could readily isolate but the KAO cannot. In fact, a whole range of Galactic
astronomy problems currently being investigated from the KAO will be extended to the study of
external galaxies by SOFIA. SOFIA would also permit entirely new extragalactic investigations, such
as determining whether a massive burst of star formation or an obscured central object is the ultimate
luminosity source in an infrared galaxy. The extensive IRAS observations of galaxies further
emphasize the need for SOFIA, for example, in understanding why many interacting galaxies have high
infrared luminosities.

Of course, the power of SOFIA will also be exploited on solar system objects. Observations of
occultations at near-infrared, visible, and near-ultraviolet wavelengths will be made as opportunities
arise, to study planetary atmospheres and ring systems. Comets, the least understood objects in the
solar system, would also be prime targets for SOFIA, from which near-infrared observations should
permit new insights into the properties of cometary matter and its relationship to the primitive solar
nebula. Far-infrared and submillimeter images of planets will be obtained at much higher spatial and
spectral resolution than that available on current spacecraft. These will provide new understanding of
atmospheric phenomena of the planets and permit the study of satellites that are too close to the
parent planet to be resolved by other, smaller telescopes, such as SIRTF or the KAO. Figure 6 shows
the far infrared spectrum of Saturn's rings measured from the KAO. Because the rings could not be
spatially resolved, the spectrum had to be obtained by subtracting spectra of the Saturnian system
taken 6 years apart. SOFIA could make the same measurement on a single flight, eliminating the
systematic uncertainties associated with the subtraction.
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N.m

A Logical Progression

Having established the science potential for SOFIA based on its anticipated performance, we now
examine its role in NASA's cast of existing and planned astronomy programs.

Figure 7 is a plot of photometric sensitivity for point source detection versus wavelength for the KAO,
IRAS, SOFIA, and the planned spaced-based facilities HST, SIRTF, and LDR. Note that increasing
sensitivity is down on the ordinate. Only the values for the KAO and IRAS are empirical. However,
the SOFIA curve is extrapolated for the larger aperture from the KAO curve and so should be quite
reliable. The curves for HST, SIRTF, and LDR are estimated, and so can only be compared semi-
quantitatively. For the KAO and SOFIA the wavelengths are dashed where observations are normally
done from the ground. The LDR curve is dashed because the size and lower wavelength cutoff are not
well established. A curve for ISO would lie between those for SOFIA and SIRTF.

Relative to a spaceborne observatory, an airborne telescope suffers the disadvantages of the residual
atmosphere, namely reduced transmission and increased atmospheric emission. In addition, the
telescope cannot be cooled much below the ambient atmospheric temperature because of condensation,
so that cryogenically cooled telescopes such as ISO and SIRTF have an enormous advantage in
photometric sensitivity.

In Figure 8 angular resolution as a funection of wavelength is compared for the same facilities as in
Figure 7, with the addition of the IRTF on Mauna Kea. The IRTF and IRAS curves are dashed to
indicate the operating wavelengths, and the LDR curve is dashed to indicate the uncertainty in the
size. The curve for ISO would be similar to that for IRAS, while the FIRST curve would lie between
those of SOFIA and LDR.

All the telescopes are limited by diffraction at their longer operating wavelengths. At the shorter
wavelengths, HST and SIRTF are limited by the telescope optics, whereas the IRTF, KAO, and SOFIA
are limited by seeing. Although the best optical images obtained on the KAO to date are about 3", it is
believed that the shear layer over the open port - which is the ultimate limitation - would degrade
stellar images only by about 1". Hence it is thought that the 3" limit shown for SOFIA is conservative,
assuming a careful design of the facility.

Clearly SOFIA will complement 1SO and SIRTF by providing higher spatial resolution, whereas these
cryogenic telescopes will permit higher photometric sensitivity.

Anticipated spectroscopic resolving power is shown as a function of wavelength in Figure 9 for the

same facilities as in Figure 7. For the ambient temperature telescopes, higher spectral resolution
reduces the background and so leads to higher sensitivity. Lower resolution instruments take better
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2.6

A Logical Progression (contd)

advantage of the reduced backgrounds provided by cryogenically cooled telescopes, so for example the
SIRTF instrument complement does not include a high resolution spectrometer.

For SOFIA it is expected that new technology will permit extension of heterodyne techniques from
100+ um range recently achieved into the 10+ um range, and improve the sensitivity of these receivers
by large factors. Naturally this and other focal plane technology - such as integrated far infrared
arrays - used on SOFIA will be transferred to FIRST and LDR, so that SOFIA will serve as the major
precursor to these facilities.

The operating intervals for realized and planned non ground-based telescopes is put in perspective on
Figure 10. The long lifetimes of the airborne facilities relative to space-based programs is striking.
Of course the space missions in fact have more observing hours. However, the aircraft observatories
provide a continuity in terms of personnel training and technology development opportunities, which
transcend the space astronomy operations.

From the foregoing technical considerations, it is clear that SOFIA would be a major advance over the
KAO and would be invaluable for investigating IRAS sources. Assuming a 3 meter aperture, for
compact sources it would be 10 times more sensitive, take data 100 times faster, have greater than 3
times better angular resolution, and be able to carry out observations in a volume of space nearly 40
times that of the KAO. Whereas the KAO can detect only about 15 percent of the far infrared IRAS
survey point-sources, SOFIA could detect all of them!

The character of SOFIA will make it a valuable complement to ISO and SIRTF. If development is
started promptly, SOFIA could be flying during the ISO mission, and five or more years before SIRTF is
launched. It would thereby be able to elucidate the character of many ISO sources and provide
invaluable observations of IRAS sources to help plan the SIRTF observing program. After SIRTF is
launched, SOFIA could study the brighter SIRTF sources at higher spatial and spectral resolution than
obtainable from SIRTF. Of course, ISO and SIRTF will have higher sensitivity for broad band and low-
to-moderate spectral resolution observations, so that duplication of the observations from the
cryogenic telescopes would not be attempted from SOFIA.

SOFIA's role as the stepping stone to FIRST and LDR was mentioned above. As a facility which is
readily reconfigured for particular observations, SOFIA would allow detailed infrared studies to
promptly investigate the discoveries obtained with other major facilities such as HST, AXAF, and
GRO. Simultaneous observations could even be scheduled with a minimum of advance notice. Thus it
is clear that SOFIA is a natural and' important element in the overall progression of NASA's
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2.6

A Logical Progression (contd)

In space parlance SOFIA is an observatory class facility, readily accessible to the science community
with a short turn-around time, flown on a reliable, reuseable "launch" vehicle. Annual peer review
assures broad community involvement, rapid implementation of new focal plane technology, and
prompt response to ephemeral scientific opportunities. Truly, SOFIA would be a facility with
tremendous potential for science which cannot be done from earth, while remaining unencumbered by
many of the difficulties associated with space missions.
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2.7

The Need for SOFIA

The above discussion confirms that SOFIA will satisfy the following critical needs in astronomy which
will not be met any any other observatory foreseen in this century:

(a) The need for higher angular resolution at infrared wavelengths which are inaccessible from the
ground

(b) The need for increased sensitivity at high spectral resolution, and

(c) The need for an interim facility leading to the spaceborne 8 meter FIRST and 20 meter class
LDR anticipated in the first decade of the 21st century

The first need - for higher angular resolution - is demonstrated by the complex structure of star-
forming regions in our Galaxy, and of nuclear regions in our galaxy and in external galaxies. This
structure is seen at those wavelengths observable from the ground, where the resolution is typically
about an arcsecond at 10 microns and 30 arcseconds at 350 microns. These objects usually emit most
of their energy at wavelengths between 30 and 300 microns, a range completely inaccessible from the
ground. The KAO is the only observatory now available for routine study of these important sources at
the peak wavelengths, but diffraction in its relatively small aperture causes its angular resolution to be
10 to 30 times worse than that attainable in optical or radio regions of the spectrum. The crucial
infrared imaging provided by SOFIA would permit far more detailed comparison of the structures and
luminosities of these objects at all wavelengths.

The second need - for increased sensitivity at high spectral resolution - is motivated by important but
faint atomic and molecular features arising in the interstellar medium. The photon fluctuation noise
produced by an ambient temperature telescope is much reduced by the narrow bandwidths associated
with high resolution spectroscopy. In this regime the advantage of a refrigerated telescope is
minimized, which is a major reason why no high resolution (~ 1 km/s) spectrometers are foreseen on
ISO and SIRTF. However, the sensitivity increases as the square of the telescope diameter for
compact sources. Thus for example SOFIA will allow us to study molecular gas motions deep in the
interiors of dust-shrouded globules and massive molecular clouds, to search for rare constituents that
are interim products of chemical reactions in such clouds, to detect light hydrides (such as HC1) and
carbon ring molecules, and to study gas dynamics and physical processes in galactic nuclei.

The third need - a logical transition from the KAO to FIRST and LDR - is perceived in the context of
the Hubble Space Telescope development. Whereas for HST there is an extensive tradition, a large
community of qualified astronomers, and a long history of instrumentation for observations at
ultraviolet and visible wavelengths, the contrary is true for the far-infrared. Indeed, the airborne
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2.7

The Need for SQFIA (contd)

astronomy program has been a major factor in the development of:
(a) Secientific background

(b) Observing techniques

(c) Instrumentation

(d Personnel in the discipline of infrared astronomy

However, the discipline needs to be further strengthened to undertake a project the size of LDR.
SOFIA would effectively bridge the gap between KAO and LDR in all four of the vital areas cited
above. Its improved sensitivity and angular resolution, the "hands on" working environment, and the
annual opportunities for proposing new science and instrumentation, assure a lively and productive
program well into the 21st century.

In addition to fulfilling these needs, SOFIA would retain the unique features of its predecessors:
wavelength coverage from the near ultraviolet to millimeter wavelengths, and deployability for
observations of ephemeral events such as comets, eclipses, occultations, and novae.

To put the project in perspective, one has only to remember that the 0.9 meter KAO telelscope is the
sole observatory-class facility routinely available for most of the infrared spectral range. Imagine
what the demand for a larger ground-based telescope would be if the only one in existence had a 0.9
meter aperture!

Thus, it is clear that SOFIA will provide a rich harvest of astronomical results, and concurrently

support preparations for planned far-infrared and submillimeter space astronomy missions. SOFIA is
needed to take its place among the world's unique astronomical facilities.
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3.0

3.1

TELESCOPE SYSTEM DESCRIPTION
Scape

This section contains information on the SOFIA Telescope System from a System Engineering
perspective; specific subsystems' analyses and concepts are addressed in Section 4, and the Aircraft
System, Ground Support System, and Operations are described in other sections. First, a brief
configuration summary of the Phase A Telescope System concept is presented, including a physical
description of the telescope structure/optical assembly with major trades/alternatives, the
control/communications system, and miscellaneous supporting components. Next, the top-level
Telescope System budgets and constraints are presented, consisting of a requirements "flowdown,"
optics and pointing budgets, and volume/mass constraints and budgets, including mass "status." The
summary continues with an overview of system interfaces, including a communications block diagram
and subsystem interface requirements. The final subsection summarizes the concept and assesses
feasibility; and presents major system issues and technology drivers requiring near-term analysis,
reassessment, or optimization to establish detailed feasibility against current system requirements.
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3.2

Configuration Summary

The chart illustrates the physical layout of the Telescope "subsystem" concept (opties, counterweight
and structure), as mounted on the aft cavity bulkhead in a modified Boeing 747-SP. The optical
assembly consists .of a generic Cassegrain configuration, with ~f/1 primary mirror supported in a
removable "tub,” a removable headring/spider assembly supporting interchangeable chopping secondary
mirrors (system f/11 (Cassegrain) and f/13.5-17 (Nasmyth)), and a flat reflecting tertiary mirror (not

shown) to direct the beam 90° aft to a Nasmyth instrument. A Cassegrain instrument would mount
below the primary mirror tub.

The optical train is supported by the Telescope structural elements, consisting of the two-section
metering tube of graphite-epoxy/aluminum sandwich construction, an aluminum centerpiece ring, and
Invar tubes attached to either side of a spherical air bearing, also of Invar. The
counterweight/instrument flange (cabin side) balances the moments at the air bearing center and
supports the Nasmyth instrument; the configuration for this element is very preliminary. The hollow
air bearing, which has a -31 inch diameter inner "hole" and 48-inch outer diameter, allows unlimited
Telescope elevation range and ¢ 5° cross-elevation/LOS motion.

Shown also is a set of electromagnetic torquers, just outside of the air bearing stator, for Telescope
pointing control. On the cavity side of these torquers is a pressure-equalization device to eliminate
cavity-cabin pressure differential across the air bearing. Finally, external to the torquers, are the
vertical actuators for the pneumatic vibration isolation system; the horizontal actuators are not
shown. This system isolates aircraft structure-borne vibrations from the Telescope structure.
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Design Summary

Pertinent details of the Telescope System concept are summarized. An aggressive weight goal for the
system (including air bearing and counterweight) is 30,000 1bs; see weight breakdown/status in Section
3.3. This goal is highly dependent on achieving the 110 kg/m* "areal density" goal for the 3-meter
primary mirror facesheet; the mirror core/backface is expected to have about the same mass. A 48-
point axial, 12-point lateral self-adjusting pneumatic primary support system of Graphite-Epoxy (G/E)
is envisioned, based on an existing ground-based 3.5 m Telescope design. A glass secondary mirror with
a 2-axis chopper requires 50-Newton actuators, and a ~225 Hz bandwidth controller to meet the
chopping requirements.

The Telescope Pointing and Control System torquers are similar in design to the KAO system, using
electromagnetic actuator segments attached to the Telescope for 3-axis pointing. The inertial
reference units (gyros) are the rate-integrating type, using "medium technology" gas bearings, which
should be adequate for the SOFIA application. The acquisition and tracker cameras are envisioned as
ISIT and CCD types.

The current bearing concept is a spherical air bearing (scaled up KAO type), requiring ~40 standard
cubic feet/minute of air at 265 psi, with a rotor outer diameter of 48 inches and a very stringent air
gap of less than 1/1000 inch. The four-point vibration isolation system utilizes active pneumatic "air
spring” actuators during normal tracking operation, internal snubbers to restrict deflections during gust
loads, and external snubbers to preclude "bottoming"” during hard (or crash) landings.
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Major Telescope System Trade-offs

Many alternative concepts were analyzed for the various elements of the Telescope System. Some of

the major trades are shown on the chart, with the concepts selected written in italics; more details are
provided in Section 4.

A component of overriding importance and technological complexity for SOFIA is the ~3.0 meter, f/1
primary mirror, which must have very low mass and yet provide optical quality imaging. The ARC
concept for this mirror, based on inputs from major U.S. opties manufacturers, is an "ultra-low
expansion” (ULE) silica material in a structured (web-backed) configuration; this represents an
extension of the technology used on the Hubble Space Telescope 2.4 m mirror. The multi-point mirror
mounting subsystem, which must control mirror position and surface deflections over changing load
conditions (e.g., elevation angle), is envisioned as an "active" subsystem employing pneumatically

driven pistons; piston forces will be controlled by a preprogrammed routine, i.e., no feedback control
loop is envisioned.

The Telescope metering structure material was iterated several times, with graphite-apoxy/aluminum
sandwich chosen for weight and thermal advantages; the centerpiece material selected is aluminum
and the airbearing/support tubes are of Invar. A metering "tube" was selected over truss designs for
modeling simplicity, although further analysis of several factors may change this.

The secondary mirror chopper was found not to require a "reactionless" design from a dynamics
perspective, and thus power dissipation can be minimized. A two-axis mechanism using existing
technology (as opposed to single-axis with rotation) was selected for operational flexibility. The
primary mirror temperature control will require forced gas "blowing" to minimize its time constant.
Gyros will likely use gas as opposed to ball bearings or dry rotors, and appear to be more effective
when attached to the instrument flange, vs the Telescope. A major trade was the support system:

after reviewing many concepts it still appears that a KAO-type air bearing is most promising, but it
should be demonstrated.
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A distinct element of the SOFIA Telescope System is that portion required to provide Telescope,
science and mission command, control, and communications. Since this system is not subject to
questions of feasibility, a detailed engineering assessment has not been warranted; however, a top-
level conceptualization of architecture and implementation was performed to assess system require-
ments and provide a basis for cost estimating. It was noted that simple transfer of the existing KAO
system to SOFIA was not desirable, due to its limited capabilities, reliability/maintainability issues,
and difficulty of upgrading; however, a system modeled after the KAO configuration (with upgrades) is
warranted. Additional requirements for the BOFIA system include: reliability considerations, with high
mean time between failures and noise immunity, and redundant elements (e.g., Central Processing
Unit) available for immediate switchover; modifiability, by using standardized hardware and communi-
cation protocols to allow simplified change and expansion; a network concept allowing direct
subsystem-to subsystem communications and ease of system build-up; a ground station (hardwire) link
to enhance experiment integration and increase user efficiency; and addition of Network Manager and
Test Work Stations to provide network configuring and system maintenance. Further details of the
planned configuration are provided in Section 4.5.
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Major System Elements

The chart lists major elements to be included in the SOFIA Data Management, Acquisition and
Communications System. Numerous sensors and actuators are distributed throughout the Telescope
and cavity requiring data acquisition, display and logging, and command generation to operate mission
equipment. For example, temperature sensors will be installed at several locations in the cavity and
on the Telescope, and their outputs must be monitored/logged to ensure that a proper environment is
maintained and to assist investigators' data interpretation. Another example is the tracker camera or
chopping secondary mirror, where position sensor outputs (e.g., zoom, focus, filter, chop waveform,
ete.) are provided to system operators who monitor and control (through commands to actuators) the
functions of these components. The various major elements all interact through a broadband LAN
and/or video distribution network, with a central processor unit (CPU) providing the central
communications and processing node. The elements all utilize certain functional units or services
provided by the system (as needed), including: the Local Area Network, the Central Processing Unit, a
control panel/workstation, a control interface, sensors/transducers/actuators, firmware/ software, and
mass storage. A more detailed description of the system elements and services used is provided in
Section 4.5. A system block diagram and interface summary is provided in Section 3.4, "Interfaces."
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Control and Monitoring Systems

The chart lists the SOFIA Telescope and Mission System functions which require control and/or
monitoring by mission operations or experimenter personnel. For each functional element,
identification of the type of control/control system is given and the need for "front panel” (console/
workstation) display or indication is shown; all functions require front panel controls for actuation.
The functions are controlled/displayed at either the Telescope Operator Workstation, the Mission
Manager Workstation, the Tracker Operator Workstation, or the Investigator Workstation(s). Some
displays/indicators are shared by two or more workstations, or may be manually or automatically
controlled. For example: the tracker (video) field is controlled by the Tracker Operator, but may also
be displayed at the Experimenter Workstation; the secondary mirror chopper and focus can be
controlled by either the Telescope Operator or the Experimenter; Telescope caging may be activated
automatically (for loads or torquer capability exceedance) or manually by the Telescope Operator;
target acquisition and tracking can be performed manually by the tracker operator or automatically (in
the current SOFIA concept) by an automatic video tracking system. Functions such as Telescope
stabilization, vibration isolation, and fine balancing are performed automatically with feedback (FB)
control loops, but are also displayed for monitoring purposes.
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3.3

System Budgets and Constraints

Requirements Flowdown

To initiate the process of developing system "error budgets" a hierarchical itemization of error
contributors is developed; the chart illustrates an example of this process for the critical area of
image quality. Others were developed for sensitivity, functional capability, and observational and
operational efficiency. As can be seen, contributors to image quality degradation are numerous for an
airborne astronomical Telescope, with the major categories including the optics (mirrors), image
stability (pointing and control, and structural stability), and "seeing." Within the optics category are
the three mirrors, under each of which is considered contributions from mirror metrology, thermal
distortions, and fabrication errors. (An additional budget is developed for cases where the secondary
mirror is scanned or chopped.) Under image stability, two major categories are: the Telescope pointing
stability, considering loads and structural dynamics, and performance of sensors, control system and
actuators; and structural distortion due to variable loads and thermal environments. The "seeing"
contribution is divided into effects from: cavity/boundary layer/airflow density fluctuation and
structure; Telescope-generated or contained density variations; and effects within the air bearing
tunnel (expected to be insignificant). The following pages contain top-level opties and tracking system
error budgets, a Telescope volume/geometry constraint "budget," and system and Telescope mass
budgets. Other lower-level budgets and constraints (e.g., structural rigidity and distortion) are
contained in the subsystem descriptions in Section 4.
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Top-Level Error Budgets

The chart shows the first tier of error budgets developed for the Telescope optical assembly
("Wavefront Error") and the SOFIA Pointing and Control System ("Tracking Error"). Both budgets are
felt to be extremely stringent, and, if achievable, would give the Telescope diffraction-limited
performance in the range of 7 microns (ignoring the effects of seeing). The wavefront error budget for
the 3-meter aperture spot size requirement includes contributions from the optics (mirrors/ window),
focus errors, and alignment errors. Another more stringent budget has been developed for the 2 meter
aperture requirement. Under each mirror and the instrument port window error sources include
fabrication, metrology, and mounting. Focus error contributors include despace, mirrors' distortion,
focus increment/measurement accuracy, etc. Alignment error sources are decenter and detilt, for a
centered secondary. Detailed error budgets are contained in the respective subsystem descriptions in
Section 4.

Under the overall tracking error requirement of 0.15 arcsec RMS, based on use of a focal plane
tracking sensor, the contributors include: aircraft excursions, or gust/maneuver disturbance residual
effects on the Telescope (due to air bearing "stiction” or Telescope imbalance); aircraft vibration, or
structure-borne vibration not attenuated by the vibration isolators and air bearing; thermal shift,
which encompasses thermally induced relative motion between the focal plane tracking sensor and the
instrument focal plane; aerodynamic loading, or wind-induced torques on the Telescope (major error
source); and the omnipresent sensor and control system electronic noise.
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Telescope Volume/Geometry Constraint

The chart shows the current cavity geometry at the Telescope centerline position, as developed during
the second phase of the Boeing Phase A cavity modification study. A representative model of the 3-
meter Telescope, provided by ARC, is shown at its extreme elevation positions of 20° and 60° above
horizontal. As can be seen, it appears that interference problems may arise at the 60° (full up)
elevation position, if the Cassegrain instrument is not reduced in size. Also, the Telescope headring
and secondary mirror mechanism are in close proximity to the cavity door. Note that this sketch
depicts the Telescope with no cross-elevation/LOS offset; currently, Boeing believes that for this
Telescope only $+2° of these "coning” motions are allowable, while the current science requirement is
for $+4° (under review). Also, the specification calls for an elevation range of 15-75° with vignetting;
the higher elevations may cause structural interference. Furthermore, the vibration isolation system
"travel” (currently t ~0.4 inches during tracking, up to $0.9 inches for crash loads) expands the
Telescope dynamic envelope directly. Having discovered the locations of potential interference, it is
incumbent on the cavity designer to provide as much space as possible in these areas, and to a first
level this has been done. Likewise, the Telescope detailed geometric design should be developed
bearing these "stress points" in mind; otherwise the cross-elevation/LOS range, elevation range, and/or

Telescope diameter must be reduced. Tradeoffs are continuing in these areas, and close coordination
will be needed.
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Telescope Mass Budget and Status

The chart shows the mass budgets and status for the SOFIA Telescope, which is the physical element
supported on the aft cavity bulkhead, including optical system and structure, air bearing and vibration
isolation system, and counterweight/instrument flange. The original "going-in" budget was developed
with an overall goal weight of 30,000 Ibs, and reflected an early simplistic division of 10,000 lbs each
for the Telescope, counterweight/instrument, and air bearing/vibration isolation system. The 30,000 Ib
goal was established to minimize the amount of ballast needed in the aft section of the aircraft for
c.g. purposes, to balance both the Telescope and the added weight of the cavity modification. (Ballast
is required for forward weights in excess of ~31,000 lbs at a ratio of about one pound ballast per 1.6 lbs
forward weight; part of the "ballast" is taken up by aft-mounted mission equipment.) The current
budget maintains the goal weight of 30,000 Ibs, but has been redistributed to account for the knowl!-
edge gained during concept development. As can be seen in the current status weights, the major
"exceedances" are in the air bearing and the counterweight, which are the main areas where
improvement is possible with further definition. The counterweight, whose requirement is to balance
the Telescope moment about the air bearing centerline, can be reduced greatly in mass by extending
its length (arm) and distributing its mass in a "dumbbell" fashion. The aircraft configuration easily
allows for this; instrument mounting issues would be a concern. No attempt has been made to light-

weight the air bearing design as yet; this subsystem is a major candidate for further analysis and design
iteration in the near term.
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SQOFIA Payload Mass Budget

The SOFIA-assigned payload mass budget is shown; this represents the mass of all personnel and
equipment needed for SOFIA science missions and ferry flights, which is added to a "stripped" aircraft
to obtain total Observatory mass. The cavity modification study contractor, BMAC, has taken the
further step of defining the "stripped" aircraft empty weight, the equipment locations (layout) for c.g.
and ballast calculations, fuel requirements, drag increments, etc., to determine the SOFIA aircraft
performance capabilities.

The weight of the cavity modification has grown from 12,700 Ibs due to upsizing the baseline telescope
from 2.5 to 3.0 meters (primary mirror diameter) in the Phase II study, necessitating a larger cavity
opening and, hence, greater structural reinforcement. Possible areas for weight reduction are under
consideration. The ballast required for this configuration is "dead weight" to be added in the tail area;
some ballast is accounted for by aft-mounted mission equipment, including consoles, nitrogen tanks,
compressors, etc. Ultimately it is desirable to achieve a science mission payload of 60,000 1bs or less,
in order to meet the standard aircraft endurance at altitude requirements; the alternatives are to
incorporate "enhanced performance" or boosted thrust engines, and/or reduce the modification drag
increment. Capability in the current configuration is ~ 5.5 hours at FL410. Further details of aircraft
weight and performance are provided in Section 5.
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3.4

Top-Level Interfaces

For purposes of this early "concept definition" phase of the SOFIA program, major interfaces have
been defined only in a broad sense. Efforts to specify detailed interface locations and requirements
are needed in the near term to identify task allocation, element scopes and boundaries, and detailed
configuration and performance "sub-requirements." It is useful for now to identify interfaces only
between the major elements shown, which are: the Aircraft System (including the cavity and its
subsystems); the Telescope Assembly (with peripheral equipment and science instrument); the Consoles
and Electronics Subsystem; and the Ground Support System (facilities and equipment). Interfaces fall
generally into the discipline categories shown, and the matrix defines which categories apply across
the various boundaries (top-level).

Structural/mechanical interfaces between the Telescope Assembly and Aircraft are the
bulkhead/vibration isolation mount and power/communications line routing from cavity to Telescope;
thermal/environmental is conduction and radiation/convection between the cavity and Telescope.

Between the Aircraft and Consoles and Electronics are: structural - equipment mounting and cable/line
routing; thermal/ environmental - on board cavity cooling/heating/purging, cabin environment and
(potentially) equipment cooling; electrical - power distribution to consoles, computers, etc.; and
communications between aircraft based sensors (navigation, air data autopilot, ete.) and mission
equipment.

Between Aircraft and Ground are: structural - ground equipment (cooling, electrical, ete.) attachment
to aircraft; environmental - cooling equipment to cavity; and electrical - GSE to aircraft (power cart).

Between Telescope and Consoles and Electronics are: environmental - primary mirror cooling/heating
and instrument environment; electrical, from the console power supplies to the Telescope Assembly
components; communications, control and monitor (see next page). Between Telescope and ground is
structural/mechanical only (Telescope, P.M., headring handling equipment). Between Science/Mission
and Ground is communication only (Ground Station Link).
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Control and Monitor Communications Interfaces

This top-level communications block diagram, which connects elements of the Telescope, Data
Management/Acquisition and Control, and Aireraft systems, depicts the complex interactions involved
in mission operations with SOFIA. All of the subelements except the direct tracking/guiding loop
interface through the Supervisory Computer (redundant Central Processing Unit), which lies at the
heart of the system. The system is modeled to some extent after the KAO, but the centralized
network architecture updates the more distributed KAOQ system; this allows use of modern Local Area
Network technology. Another central node is the Experiment Computer, which interfaces with
experimenter main and remote workstations, data archive, the system CPU, and the instrument via the
experiment electronics "box." The latter has a direct path to the secondary mirror chopper, enabling
chop phase control. Environmental and Science/Mission sensor/actuator signals (e.g., for cavity
environment, door/fence and experiment control) are routed through the CPU to telescope operator,
mission manager, and experimenter workstations. The tracker operator has separated controls for
initial target acquisition, and manual on-axis and offset guiding operations; real time starfield video
signals from the tracker are also routed to telescope operator and experimenter displays. Aircraft
avionics (air data and inertial navigation systems) provide inputs through the CPU for recording and
monitoring, and a tracking control signal is routed to the aircraft autopilot for steering commands to
keep the Telescope within its cross-elevation range. Peripherals to the CPU include a computer
generated starfield map for planned targets, a data logger and printer.
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3.5

Summary and Conelusions

The goals of the SOFIA in-house Phase A study have essentially been achieved, with the establishment
of basic feasibility and preliminary cost estimates for the aircraft modification, Telescope System, and
mission operations and ground support systems. The BMAC Phase II concept definition study,
completed in August 1987, has developed the cavity, cavity door, BLC fence/ramp, aircraft layout,
systems routing, and other technical concepts in sufficient detail to allow confidence in feasibility
assessment and costing. With the exception of some areas of technology yet to be demonstrated, but
believed to be tractable, the Telescope System concept has also been shown to be feasible; alternative
approaches have been identified where technical risk still exists. The mission operations and ground
support systems can be developed with minimum risk, using commercial or off-the-shelf elements in
many areas. Cost assessments have been performed for the above major areas, using computer cost
models, contractor estimates (e.g., BMAC, Corning/Kodak), and contracted cost estimating efforts
(e.g., SAIC). These estimates are not included with this report. Finally, many areas of potential risk
have been identified, as delineated in the following pages and in the subsystem descriptions of Section
4. The top-level system issues are believed to be: Telescope System mass, affecting aircraft
performance; telescope optics technology, performance and mass, particularly the primary mirror,
against the stringent image quality requirements; and the telescope pointing performance, with loads
undefined in some areas, against the difficult pointing stability requirements, also affecting image
quality. Work is ongoing to further develop and assess concepts in these areas.
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Issues and Concerns

Having established basic feasibility and preliminary cost estimates for the SOFIA concept developed in
this Phase A study, it is necessary for the Project to identify those areas where significant technical
risk threatens the ability of the Observatory to meet its requirements, as defined by the SOFIA
Science Consulting Group. Elements needing further definition or technology development are identi-
fied on the charts, and fall into the Telescope and Aircraft System categories; no major concerns have
been identified for the Science/Mission Operations System or the Ground Support System. A potential
threat to the aircraft performance requirements (observing time at altitude) is the Telescope System
mass, where the 30,000 lb goal for a 3-meter telescope currently has no margin. The system mass
must be traded against size, stiffness and dimensional stability requirements, impacting image quality
and sensitivity. In the optics area, it is clear that polishing technology for a 3 m, f/1 primary mirror
(with its derived wavefront error requirements) has not been demonstrated. A potential trade is study
of larger f numbers (e.g., f/2) for the primary, with corresponding larger secondary mirrors, impacting
sensitivity. The primary Sw._.o.. weight, although theoretically close to its 1500 1b budget (reflector
"areal density" of ~110 kg/m*) has also not been demonstrated, with concerns for the structural aspects
of the mirror and mount being paramount. All of these factors (and the cavity volume constraints)
indicate further study of achievable collecting area is necessary; certainly an aperture in the 2.7 m
range should be feasible. Other concerns against image quality requirements are the extremely tight
derived structural and optical tolerances; the current concept requires system refocussing with
temperature changes as small as 2 degrees F. This may be an unacceptable operational handicap,
impacting observing efficiency. A major technology concern is also apparent in the scaled-up air
bearing concept, which requires an air gap less than 1/1000 inch for a 48-inch diameter rotor;
dimensional tolerance, thermal gradient, and pressure differential requirements are important
concerns for which an air bearing technology development/hardware demonstration effort is probably
warranted. The air bearing weight is also a system issue; although its budget has grown, it still needs
"lightweighting" to meet the goal. The stringent telescope pointing stability requirement (0.15 arcsec),
corresponding to the image quality requirements, is another major concern in the flight environment.
Many of the forcing functions are still largely unknown, including telescope wind loading, potential air
bearing "stiction," wire bundle loads, cavity acoustic resonances, ete. A wind tunnel test program is
needed to investigate several of these areas, and to study "seeing" effects and incremental drag. A
potential trade is the inclusion of image motion compensation (IMC) by dithering the secondary or
tertiary mirror; however, high frequency jitter sensing is a major concern for IMC. Another tradeoff
resulting from the cavity volume constraint is that of telescope size vs cross-elevation/LOS angular
range; apparently one parameter or the other (3 m, $5°) must be alleviated. A final concern dealing
with the telescope and cavity is the need to verify the results of the thermal models developed for

SOFIA; one possible method would be to predict and verify KAO performance using similar models and
assumptions.
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Issues and Coneerns (Contd)

For the aircraft modification study, three areas of important concern are currently identified:
cavity/structural mass, incremental drag and "seeing" impacts. A tradeoff study is warranted for the
bulkhead mass vs. deflection due to differential pressure; mass can be reduced if deflection is allowed
to increase, but concerns are raised for bulkhead/telescope interface dimensional tolerances and for
design of the telescope capture/locking device, which might have to be moved from the forward cavity
bulkhead elsewhere (e.g., aft bulkhead). The incremental drag due to cavity door/aircraft skin
geometry (climb performance with door closed), and due to BLC fence deployment (impacting cruise
ceiling while observing) is an issue requiring further modeling and test. Of course, seeing effects from
boundary layer control devices are a continuing concern.

Finally, certain "project issues" have been identified requiring near-term review. First, a more com-
plete, detailed and clear statement of system requirements is needed for future program phases, with
efforts having been initiated in this area. One general item to be addressed is to what extent design
requirements (vs. purely performance requirements) are to be levied; that is, the configuration "trade
space” might have to be opened. Another effort which should be undertaken as part of the require-
ments review is asserting a "project position" against difficult requirements; that is, the project would
establish alternate (relaxed) requirements in certain areas to reduce technical, schedule and cost risks,
particularly in the image quality and pointing stability areas. A final programmatic subject for which
near-term guidance is warranted is the definition of subsystem/interface boundaries, work allocation,
and responsibilities for design, development, integration and testing of the various SOFIA elements.
This impacts the scope of effort required of NASA/ARC, the telescope contractor, and the aireraft
modification contractor. Efforts have also been initiated in this area.



S¢-

hg]

S3LIMNBISNOJSIH ANV ‘NOLLYOO TIV XHOM ‘SIIMVANNOS WILSASENS/WILSAS 40 NOILINII3A -
SINIW3HIND3Y G3XV13Y 40 NOILYHIAISNOD -
SANIN3HIND3Y A3VL3A ANV 313 TdWOD FHONW 40 INIFWJOTIAIQ -

S3INSSI 103rodd -

S30IA3A TOHINOD HIAVT HVIHS ANV ONIFIS. ALIAVD -
(SSVI "'SA) NOILOT 1430 QV3HYING 318VMOTIV -
(3ONVIWHOHId O/V SA ‘IONTJ 0718 QIA0TdIA ANV HOOA A3SO1D) OVHA TVANIWIHONI -

W3LSAS LIVHOHIV -

(QLNOD) SNHIONOD ANV S3INSSI

JIJU3)) YOIBISIY Sawry

VIHOS












SUO(}BPOW WODDY JUIWNIISU]

[9POo [swJay], A1ja8) pus adoosafa
suofjediunwwo) pus ‘uoyyisinboy ‘yuawadsusy vIBQ
wa3sAsqng [oayuo) pus ujjutog

wajsAg uojyvlos] uoi1vIqIA pus Bulaeayg ajy

ainjonayg adoosaqa],

sondo

Ly
9°v
1 4
8 4
L
[l 4

[ 4



4.1

Optics
EEEEEEEEE

The aperture of the telescope is to be in the range of 2.5 to 3.0 m. The minimum requirement of 2.5 m
is set by the objectives of the scientific mission for sensitivity and resolution. The upper limit will be
set by the size of the aircraft.- Presently, the Boeing 747 SP appears capable of accommodating close
to3 m.

The spectral or wavelength range over which the telescope will operate must be very wide to accomo-
date the needs of the scientific observations and pointing control. Short wavelength observations of
the planets plus a need for visible fine guidance through the telescope itself dictate imaging in the
visible to near UV. Observations at the much longer millimeter wavelengths are also desired.

The configuration will be of a Cassegrain type to provide the compactness needed to contain the
telescope within the aircraft and the aerodynamic boundary of the open cavity.

The unvignetted field over which the image quality specification must be met is defined over a circle
which is 8 are minutes in diameter at an f/ratio of 18. This ensures that baffles and apertures do not
intercept any part of the beam within this field when operating at the largest system f/ratio.

The f/ratios which the telescope will provide depend upon the configuration that is desired for the
scientific instrument. For instruments that operate at the Cassegrain focus, an f/11 beam is
provided. For instruments that operate inside the pressurized cabin a Nasmyth focus is provided. The
focus location is available at two places corresponding to a system f/ratio of either £/13.5 or f/11,
depending on the needs of the specific instrument, by providing two different secondary mirrors.

For photometric reasons, it is useful to define the requirements for imaging in terms of encircled
energy at a specified wavelength. It is also useful to specify image quality over an aperture in the
event that the primary mirror surface errors are greater in the outer zones, due to the difficulty in
fabrication or mounting. The effects of atmospheric seeing are included separately in a system-level
image quality budget.

The primary mirror coating has a reflectivity that is nearly flat over the spectrum. Bare, vacuum-
deposited aluminum is very good in this respect, in addition to having a high visible reflectivity and
excellent durability in the expected environment and for cleaning.

The focus locations accommodate scientific instruments at the Cassegrain focus, or at the Nasmyth
focus where the instrument may be accessed by personnel in the pressurized cabin.

4-2
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Telescope Configuration

The SOFIA telescope is shown oriented vertically. Incoming light is focused toward the prime focus.
It is refocused by the secondary mirror to the Cassegrain focus, or the Nasmyth focus via the tertiary
mirror, depending upon the choice of secondaries that has been made. In the event the Cassegrain
focus is chosen the tertiary mirror would be removed or replaced with a beamsplitter if visible fine
guiding were desired.

The primary mirror baselined for this study will be of a light weight, sandwich-type construction. Its
weight is desired to be no more than 1500 Ib, based on system-level weight budgeting.

The secondary mirror is mounted on a space-chopping mechanism. The mechanism oscillates the
secondary to achieve an alternating view of the sky when background subtraction signal processing is
to be employed. The mechanism will also make it possible to move the secondary axially to adjust the
telescope focus when dictated by large temperature changes, and to provide a "focus dither" function
for submillimeter astronomy.

headring. The headring couples the metering structure to the spiders, and provides support to a
boresighted star tracker and balance weights if required.

The telescope is attached to the telescope support ring and then to the spherical air bearing by a
tubular structure.

A graphite-epoxy tube is utilized as a metering structure in the baseline design. Its purpose is to limit

the thermally induced changes in spacing between the primary and secondary mirror, and keep de-
center and de-tilt relative motions within limits prescribed by the system error budget.
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Optieal Design Trade-offs

The chief parameter of the SOFIA telescope which is not fixed by the requirements, and therefore
adjustable according to trade-off considerations, is the conic constant of the primary mirror. There
are three principle options: a paraboloidal surface, in which case the telescope is a classical
Cassegrain; a slightly hyperboloidal surface chosen so that for one of the focal ratios the telescope will
be an aplanatic (Ritchey-Chretien); and a more hyperboloidal surface chosen so that for one of the
focal ratios the telescope will be coma-compensated.

These options are detailed in the accompanying table. The table presents the three design categories
mentioned above. Within two of the categories, the Ritchey-Chretien and the coma-compensated, two
subordinate options are given, differing in the matter of which system focal ratio is optimized. The
first row of numbers is the primary mirror conic constant. There are two systems in common use for
defining conic constant. In the one adopted here the value "-1" represents a perfect paraboloidal
surface. The slightly more negative values indicate hyperboloidal surfaces (the more negative, the
more strongly hyperboloidal.)

Since, regardless of the primary mirror surface choice, the telescope will be operated at varying
system focal ratios, each of the five columns for different primary mirrors is further subdivided into
two columns each. These are for the two standard system focal ratios of 13.5 and 17.0, which will be
obtained by use of either of the two supplied secondary mirrors. (Focal ratios from /11 to £/18 will be
feasible should appropriate secondary mirrors be available.) The next row of numbers gives the
secondary mirror conic constant, determined so as to correct spherical aberration. (Spherical
aberration is the first to be corrected in nearly all telescope designs since it affects the image size on
axis. The other low order aberrations affect only the image quality for off-axis objects, or when the
secondary mirror is tilted.)

The final two rows of numbers give the third order coma coefficients with respect to field angle and
with respect to secondary tilt angle. This is the lowest order for which coma exists. In each case the
size of the effect on the image of a point source is proportional to the respective angle. The
coefficients are the constants of proportionality. As can be seen, there is a choice between
eliminating coma as a function of field, and eliminating it as a function of tilt. As can also be seen, it
is relatively unimportant which system focal ratio the primary mirror would be optimized for, and the
difference between the classical Cassegrain (paraboloidal primary) and Ritchey-Chretien (aplanatic)
design is small compared to the difference between these and the coma-compensated design.
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Optical Design Tradenffs (contd)
Concern for the "third-order field coma coefficient” of the telescope optical design results from its
affect on the field of view.

There are two general categories of design considerations in regard to the field of view. The first is
"vignetting". This is a purely geometrical consideration of whether structural surfaces interfere with
the beam of light. SOFIA is specified to have an 8 areminute unvignetted field of view, which means
that for any celestial object within 4 areminutes of the line-of -sight of the telescope no surface or
mirror edge, except the edge of the secondary mirror which has been chosen as the aperture stop, will
limit the light reaching the focal plane image.

The other category is aberrations. In theory a telescope can only produce a perfect image at the
center of its field of view. (In practice, of course, not even this is possible.) The image quality at an
angle from the line-of-sight is always worse than the best image achievable along the line-of-sight. As
a result only some small area around the line-of -sight is used in practice. In different designs different
aberrations may be the first to unacceptably reduce the image quality. Furthermore, the acceptable
image gquality depends on the wavelength of observation. This is because "diffraction”, which is
directly proportional to wavelength, also contributes to the image, and for longer wavelengths will
obscure more and more aberration.

The accompanying graph shows field-of-view as a function of wavelength for the designs under
consideration for SOFIA. Field coma controls the field of view for the coma-compensated design.
For the paraboloidal and aplanatic designs the first limiting aberration is "curvature of field," which
makes it difficult to bring the entire field to focus simultaneously on a flat detector. It is possible to
adopt a "best compromise focus", in which a circle intermediate between the center point and the edge
of the field is brought into focus. Were it possible to use a curved detector, or additional optical
element to flatten the field, astigmatism and field coma would limit the field of view in these two
designs. In this case the advantage of the Ritchey-Chretien begins to be seen.

It is not necessary to choose the primary mirror conic constant yet, but on the basis of present analysis

it would seem the coma-compensated design should be rejected, and the slightly easier paraboloidal
primary is as adequate as the aplanatic.
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Optical Layout
The layout of the SOFIA telescope is most strongly constrained by the need to fit within the aircraft

cavity. An additional constraint is the limit on the size of the secondary mirror placed by the need to
chop it. :

Within these constraints it is desirable for the primary mirror to be as large as possible, to increase
observational efficiency, and for the primary mirror focal length to be as long as possible to reduce
aberrations and ease mechanical tolerances. It has not been possible to make absolute determinations
of these limits. Instead a rough estimate of a 3m clear aperture and a 3m focal length have been
assumed. It has been verified that under reasonable estimates of other related parameters, such a
telescope will fit in the cavity. In particular, assumptions have been made concerning the length of
the secondary mirror mechanism, thickness of the primary mirror, and thickness of the telescope

structure surrounding the primary mirror. We have used 30cm as the allowed secondary mirror clear
aperture.

The secondary mirror is positioned with respect to the primary mirror so as to fill the cone from the
primary mirror to the prime focus. In the final design it will be moved slightly closer, so as to
guarantee it functions as the system aperture stop for all points within the desired unvignetted field of
view and regardless of tilt within the specified limits. This will also reduce the system aperture
slightly below the primary mirror clear aperture.

The rotation of the telescope to different elevations determines the ideal position of the pivot line
(line through the center of the spherical air bearing parallel to the long axis of the aircraft). Ideally,
for geometrical considerations, the point at which the pivot line intersects the central axis of the
telescope will be at the center of a circle which is touched by the farthest points of the telescope,
namely the top of the secondary mirror mechanism and the outermost edges, just below the base of the
primary mirror, of the telescope structure. The center of the tertiary mirror is conveniently placed at
this same point, though the tertiary position could be somewhat different since there is no need for the
optical beam to pass exactly through the center of the air bearing. ‘

With the selection of a single size for the secondary mirror, the position of the Nasmyth system focus
becomes a function of the system focal ratio in use. The faster the system, the closer the focus to the
telescope axis, and the slower the system, the further the focus from the axis. It is possible that this
may lead to restrictions on the focal ratios available at the Nasmyth focus. The ratios available at the
Cassegrain focus will be even more restricted, and smaller (faster) than at the Nasmyth. In either case
telecompression or extension could be used to alter the focal ratio if a suitable lens material is
available for the wavelength range to be used. This would in general depend on the instrument.
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QOptical Prescription

System type: SOFIA is planned to be a Cassegrain/Nasmyth telescope. This means it will have a large
concave primary mirror, a small convex secondary mirror placed between the primary mirror and its
focal point, and a removable flat tertiary mirror between the primary and secondary mirrors at a 45
degree angle.

Aperture stop: Because the telescope will not be cryogenically cooled, it will "glow" at infrared
wavelengths. To limit the interference of this glow on astronomical observations the system aperture
stop will be at the secondary mirror. This is sometimes referred to as "undersizing the secondary."

Active secondary: The secondary mirror will be articulating. This will allow "chopped" observation,
in which the instrument alternately sees the target and blank sky, and fine adjustment of the effective
pointing direction (e.g., for scans).

Primary Mirrar: SOFIA is planned to have a primary mirror with up to a three meter usable
diameter. The useful astronomical aperture will be slightly less than this, to allow for the unvignetted
field of view and chopping with the aperture stop at the secondary mirror. The exact value is a
function of the secondary mirror in use.

System facal ratios: The secondary mirror and its support structure will be removable and
replaceable. This will allow observation at varying focal ratios. Two secondary mirrors will be
supplied, one for operation at £/13.5 and one at f/17. The system will be capable of accommodating
focal ratios from f/11 to f/18.

4-12
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Image Quality Analysis

In operation the image quality of a telescope varies as a function of the operating wavelength, with
position within the field of view, and, for telescopes which have a tiltable secondary, with the amount
of tilt. These variations are determined from diffraction theory and by the design, as previously
discussed. In addition a telescope can be characterized by its best achievable image quality, for its
shortest operating wavelength, in the center of the field, with the secondary untilted. This depends on
the manufacturing and operating tolerances of the telescope optics and structure, and on seeing
conditions.

For specification and analysis purposes requirements were established for the seeing, and for the
telescope. The latter was fixed at .5 micron operating wavelength, in the center of the field with the
secondary untilted. Both were defined in terms of the diameter, in astronomical object space, of a
circle which would enclose 80 percent of the energy from a point source. A visible wavelength, rather
than an infrared wavelength, was chosen for the image quality criterion, because of the need for fine
guidance from the focal plane image.

In view of the lack of precedent for a 3 meter class f/1 primary mirror, it was noted that the central 2
meter diameter portion is equivalent to an /1.5 mirror, for which there are polishing precedents.
Therefore optimum performance was demanded only when the primary mirror is stopped down to a 2
meter sub-aperture. Specifically a 1 arcsecond image (diameter of circle enclosing 80 percent of a
point source energy) is required of the telescope in this circumstance. A 3 aresecond image is
demanded for the full aperture. In addition a 1.5 arcsecond contribution is allowed for seeing (shear
layer and cavity effects combined). Reduced image quality is allowed throughout the field of view,
and for purposeful tilt of the secondary mirror, as indicated by the chosen design.

Telescape Wavefront Error Budget - 2 m Aperture

The SOFIA telescope wavefront error (WFE) budget is based on the image quality requirements
previously stated. These specifications are for a static telescope with no space chopping, vibration,
pointing jitter, or effects of atmospheric seeing. The effects on image quality from dynamic factors
are identified in the system-level image quality budget. The first error budget shown here is for a 2 m,
central aperture operating at the Nasmyth focus. The budget (which follows) for the 3 m aperture can
be seen to have allocations for focus and alignment that are larger due to the primary mirror operating
at f/1. Budgeting for all of the contributors of WFE has been carried out to achieve a diffraction
limited telescope by Marechal's Criterion. The contributing wavefront errors are root-sum-squared

together to arrive at a total rms WFE for the whole telescope. Then by the Marechal Criterion, the
diffraction limited wavelength is 14 times the total rms WFE.

4-14
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Telescope Wavefront Error Budget - 2 m Aperture (contd)

In many instances, the budget allocations are derived in the System Engineering Report (SER)
"Preliminary Error Budget and Tolerances" contained in SOFIA Study Office files. In the SER,
tolerances and wavefront errors are provided for a choice of system f/ratios, f/13.5 or £/17. Where the
f/ratio matters, the tighter tolerance is adopted. The allocation for optical metrology is based on an
estimate of what is presently possible. Where analysis has provided additional information other
allocations have been made, as in the case of the primary mirror mount. An allocation for a pressure

window is included. If a science instrument is pressure sealed, then this allocation may be deleted
from the budget.

NASTRAN analyses of the entire baseline mirror and mount provided surface deflections that were
analyzed with Program FRINGE. The results indicate that rms wavefront errors of 0.1 wave are
reasonable for the lower spatial frequencies preserved by FRINGE. An additional allocation of 0.05
wave has been added to recognize the effects of higher spatial frequencies. This result is adopted for
both apertures.

In both budgets, the primary mirror has been given the largest allocation as a consequence of the
difficulty of fabrication and mounting, but not by a large difference. As indicated above, the mount
allocation includes both low spatial frequency errors (such as astigmatism) and high spatial frequency
errors. The secondary and tertiary mirror mounts are budgeted to allow for one low frequency term
each, astigmatism. Focus includes the usual allowance for primary to secondary spacing error. It is
derived from a tolerance of § microns. The other focus terms place limits on changes in focus from
the other optical elements due to changes in elevation or in temperature during the time span of an
observation. The allowances for alignment are derived from tolerances of 50 microns of secondary
mirror decenter and 50 arcseconds of tilt.

Telescope Wavefront Error Budget - 3 m Aperture

The diffraction limited wavelength arising from the Marechal Criterion for the 3 m aperture is 13.7
microns. This diffraction limited wavelength may be compared to the performance using the central 2
m aperture by noting the larger wavefront error allocations in focus and alignment at 3 m. It has been
assumed that the mechanical performance of the structure and focusing/tilt mechanism are the same
for either aperture. Therefore, with the primary operating at f/1, the wavefront errors resulting from

despace, decenter, and tilt tolerances are larger, as is indicated in a following subsection entitled
"Effects of the f/1 Primary Mirror."

As one might expect, the primary mirror mount and other mounts are the same for both apertures, so
that the wavefront allocations for the two apertures are the same.

4-16
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Optical Tolerances

The accompanying table presents tolerances for the SOFIA telescope based on the optical requirements
of producing a 1 arcsecond diameter point source image when the telescope is stopped down to a 2
meter aperture, and producing better than a 3 arcsecond diameter point source image when the full
aperture is used. (In actual operation the image would be further degraded by "seeing", and will be of
reduced quality at the edge of the field and when the secondary mirror is tilted beyond the stated
tolerance, for "chopping".)

A 2m aperture at a wavelength .5 micron produces an image with an Airy (diffraction) diameter of .126
arcseconds on the sky. Thus the telescope is not required to be diffraction limited at the wavelength
where its quality is specified. This unfortunately means that the standard root-mean-square wavefront
error analysis is not strictly true. The actual image quality will depend not only upon the r.m.s.
wavefront error, but also upon the specific errors which are present. These latter are unknown, and
usually unknowable, until the telescope is actually constructed. Therefore analysis was performed
assuming an average effect, based on defocus and astigatism as the optical forms of the error.

Each tolerance in the table may result from a variety of effects in the telescope. The tolerance should
be applied to the combination of all effects. Among the ingredients in each will be such matters as
manufacturing, alignment, thermal distortions, gravitational effects as the elevation angle is changed,
aircraft and wind induced vibrations, chopping mechanism vibrations, and others.

The column labeled "absolute" must be interpreted as applying to all possible causes, but there is some
relief in the other two columns. Because of the ability to focus the telescope, some errors can be
compensated. In such cases as stability during the course of an observation, system vibrations are
important. The column labeled "stability" presents such tolerances. Yet other errors will be
compensated for by the guidance system. When a focal plane guidance system is used, only vibrational
effects of high enough frequency to escape correction by the guidance system are relevant. The
column labeled "jitter" presents tolerances for such effects.

When there is no tolerance in a column, those effects are to be considered part of the effects whose
combined limit is given in a column to the left. The absence of an "absolute" tolerance does not mean
that any error can be accepted, but only that an error does not immediately reduce the imaging ability
of the telescope. Tolerances in these columns will usually result from non-optical considerations.
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Effects of the £/1 Primary Mirror

In order for the 3-m telescope to fit within the aircraft cavity its length will also be limited to about 3
meters. This will result in a primary mirror which is approximately f/1, that is, its focal length is the
same as its diameter.

There are two undesirable side-effects of such a "fast" primary. They are a reduced quality field of
view, and tight tolerances on the positioning of the secondary mirror with respect to the primary.

If the third-order optical design is either paraboloidal-primary or Ritchey-Chretien, and the telescope
is designed for the required image quality and unvignetted field of view, the image diameter at the
edge of the field will be about 25 percent larger than at the center, at visible wavelengths. At
infrared wavelengths beyond about 10 microns the full unvignetted field will be of comparable quality
to the center of the field.

The accompanying three graphs show the mechanical tolerances as a function of the primary mirror
focal ratio. "Decenter" means a lateral shift between the axis of the primary mirror and the center of
the secondary. "Tilt" means a deviation from parallel of the surfaces of the two mirrors as determined
by planes tangent to the mirrors at their centers of figure. "Despace" means change in the distance
between the mirrors.

As can be seen, these are quite tight, especially the "despace”. The decenter tolerance must be met
and maintained by the telescope structure under all circumstances. The tilt tolerance is the limit to
which the line of sight can be changed by tilting the secondary. (Note that the angular change in line-
of-signt is one fifth of the secondary mirror tilt for SOFIA.) The despace tolerance is the allowable
drift between focusing operations, plus any vibrational motion.
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The weight of the SOFIA telescope is a significant driver of the overall system weight and therefore of
the performance of the flight system observation time at altitude. A 1500 Ib. boundary for the weight

of the primary mirror has been identified as the approximate value at which penalties in observation
time begin to be incurred.

The lower boundary of maximum telescope aperture has been set for scientific reasons. At the
beginning of the Boeing aircraft modification studies, an upper bound aperture of 3.5 m was set for
investigation of the feasibility of aircraft modification. The studies have since shown that a number
closer to 3 m is likely to be the maximum aperture that can be accommodated.

Several primary mirror technologies are readily identifiable as candidates for the telescope on the
basis of size. However, some are easily eliminated because at the required size they are far heavier
than desired. One of the best known is that of the Hubble Space Telescope (HST). It is fusion-bonded
ULE. Though an "Advanced-HST" (A-HST) technique has been worked out to reduce the weight of the
fusion-bonded approach, it is still much heavier than required to get into the desired space of size and
weight (see following graph). The next 2 graphs are shown as linear, when in fact they are slightly
nonlinear. However, only insignificant errors are involved.

The cast, borosilicate design developed at the mmmim.d Observatory intended for large ground-based
telescopes has an areal density of about 250 kg/m®. As depicted, such an areal density cannot intersect
the desired space. Estimates have been prepared by Steward Ovmm_.;no_.w for lighter-weight castings.
An early 3.5 m estimate was 1600 kg. This density is 166 kg/m“. Estimates of much lower densities
prepared for MAN are shown inside the desired space.

Estimates of weights for thin, solid-meniscus Zerodur mirrors, have been prepared by Zeiss. A
thickness of 50 mm corresponds to an areal density of 125 rn\su (not subtracting the mass removed
for the center hole). For constant thickness, a meniscus of any size falls on the line representing that
areal density. A mirror of this density can get into the desired space between 2.6 m and 2.7 m, at t
1500 1b. weight boundary. If the thickness is reduced to 40 mm, the areal density is 100 kg/m*,
allowing up to 3 m before hitting the weight boundary. Estimates of the weight of frit-bonded mirrors
were prepared by Eastman Kodak and Corning for sizes of 2.4 m, 2.9 m, and 3.5 m. The estimate for
2.9 m falls right on the 1500 1b. weight boundary. Still lighter weights can be achieved by going to Sm
composite technologies. The leading candidate is graphite epoxy. Areal densities well below 50 kg/m
can be achieved. The examples of reflectors made and tested to date cannot be expected to perform
to the image quality requirements that are expected for SOFIA, particularly over the temperature
range. Additional concerns include long-term stability, a suitable surface for polishing, and
satisfactory smoothness. .
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Primary Mirror Size/Weight Trade S

This graph is an enlargement of the desired size and weight trade space. A lower limit on size
(diameter) has been set that is firm for scientific reasons. As mentioned previously, an upper limit of
about 3 m has been identified from aircraft studies. The upper weight boundary is identified as
beginning at 1500 1b. where, based on a study of system weight and aircraft performance, a penalty in
flight observation time becomes important. While there is no lower bound shown, in practice for a

given technology it will be governed by lack of mirror stiffness. This study did not explore a lower
limit.

The prominent heavy line connects the two size and weight estimates prepared by Kodak for MAN, for
the Corning frit-bonded mirror technology. The two end points correspond to areal densities of about
90 and 110 kg/m*, respectively. This technology is well within the desired space.

Four lines of constant areal density are shown from 125 down to 60 _ﬁ\au. The top two of the lines
are representative of solid, thin menisci mirrors made of Schott Zerodur at constant thicknesses of 40
mm and 50 mm. Studies by Zeiss of the méniscus indicate that this technology is a viable candidate.

Also shown are two estimates prepared by the Steward Mirror Laboratory for spin-cast borosilicate
blanks. The estimates were prepared in collaboration with the MAN study.

Near the lowest areal density shown, is an estimate provided by MAN for the Carbon Fiber Reinforced
Plastic (CFRP) technology. It has great promise for reducing the weight of the telescope and

conseguently the whole system. Much needs to be done to determine the expected optical performance
of a large mirror made of this material.



SZ-t
(S¥313H) J¥NLA3IMY 3d0ISINIL UNHIXVU

0'¢ 6 gz Lz 9z ¥4 b'T
N _ 1 | | | L 000
| _..w.,:w\”e_oo d¥43 NVU P R
ST e
Q3aNOQ 1134 ININNOI . 001
RS W 9F - 00ll | o0
Lt 304 \V/ ZW/9Y 06 TIVWS 001
jogvicoL M LAY [~ 0071
IS QYYMILS
RS mam_.,mzmm_u~ T - oosl | oo
............ ZW/9% 521 - 0opl
- 0051
- 002
— 0091
— 0021
— 008
~ 0001
(sg1) (SN)

IHIIIM JOAAIW ANV

4403avHL LHODIIM/IZIS HOHHIN AHVWIHC VIHOS

19U YI4eISAY Sawry @Q m.\.. @@




Lightweight Pri Mi Blank Technol for SOFIA

Since one of the key drivers in the weight estimate for the system is the weight of the primary mirror,
it is appropriate to examine examples of lightweight mirror technology that are available. The table is
arranged to show ‘what has been accomplished in lightweight mirrors. Perhaps best known is the
Hubble Space Telescope (HST) mirror, which has been finished to lambda/70 rms. Though it has an
f/ratio not too different from conventional, ground-based telescopes, it is much lighter and probably
represents the state-of-the-art in optical quality for a lightweight, astronomical telescope. It provides
a well-documented benchmark.

Recently, efforts at the Steward Mirror Laboratory have produced spin-cast mirror blanks of
borosilicate glass in a lightweight, honeycomb-core, sandwich construction. The VATT mirror i
significantly more dense than the HST and much more than what is desired for SOFIA (about 90 kg/m
at 3 m dia.), but it will be an f/1 mirror and will ultimately demonstrate the polishing technology at
the f/ratio needed. The borosilicate glasses that are used in the spin-cast furnace do not have the low
expansion coefficients of the higher-cost, higher-temperature Ultra Low Expansion (ULE) fused silica,
or the glassy-ceramic Zerodur. Careful evaluation of the thermal performance of a borosilicate mirror
for SOFIA will be required. The 3.5 m mirror for the ARC Consortium telescope will take the spin-
cast technology even beyond the SOFIA size, but at a higher areal density.

Steward Observatory in collaboration with MAN has estimated that a spin-cast mirror for SOFIA can
be made significantly lower in density than the current VATT or ARC blanks. This would be
accomplished by casting thinner face sheets and ribs.

The Zeiss proposal for their feasibility study of SOFIA contained in it a solid, 77 mm thick meniscus of
Zerodur. Further study by Zeiss of the properties of the blank suggests that a still thinner meniscus of
50 mm or even 40 mm is feasible. The stiffness of a solid meniscus that thin will be a significant
design problem for suitable mounting both in polishing and for flight.

The Kodak/Corning, frit-bonded fabrication technology produces a low-density, fused-silica blank in a
sandwich form. This form is desirable for its inherent stiffness. The low expansion of fused silica
provides important advantages in thermal performance. The largest size m::.o_. designed using this
technology is reported to be 1.5 m in diameter at an areal density of 32 kg/m®,

Though efforts are being made to develop carbon Fiber Reinforced Plastic (CFRP) mirror blanks for
SOFIA by the German companies MAN-Technologie and Dornier Systems, they are difficult to evaluate
without published performance of the several different, small composite mirrors that have been tested
over a temperature range.
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Finishing Teal tar Low F/Ratlo Primary Mi

Historically, lapping and polishing of telescope primary mirrors has been accomplished using stiff, full-
diameter tools. At about f/2, even a smaller, sub-diameter lap has difficulty conforming to an
aspheric mirror surface, which has different curvatures in the radial and tangential directions.
Flexible laps that conform to the surface have been used with some success as evidenced by the /0.8
example.

The table is arranged for increasing f/ratio. Clearly, at f/ratios below the transition to full diameter
rigid laps, there are several different approaches to polishing. The f/0.8 mirror is important in that it
indicates that f/1 is not below some absolute lower limit.

In support of its work with f/1 mirrors, Steward Observatory is pursuing a stressed-lap concept. In this
concept, computer-controlled actuators around the sub-diameter lap actively control the shape of a
flexible lap so that it will conform to the highly aspheric surface. The concept has been demonstrated
in the laboratory with a sub-scale, spring-loaded analog of the active lap. Work is underway on the
polishing machine for the f/1 VATT mirror. Successful polishing of this mirror will demonstrate
another solution to the low f/ratio mirror finishing problem.

Small-diameter tools under computer control have successfully polished a number of mirrors, hence the
name Computer Controlled Polishing (CCP) used by Perkin-Eimer. The HST mirror was polished using
this concept. Other companies such as Itek and Tinsley (just to name two), have computer controlled
polishing machines. The tools, unless flexible, must be quite small to conform to the shape of an f/1
surface. However, in practice small tools must be used with great care to prevent the inadvertent
generation of ripple in the surface that can only be effectively reduced by a larger lap. There is no
reason in principle that a computer-controlled, small lap machine could not be employed successfully
to polish an /1 mirror.

A concept invented by Zeiss is called the membrane lap. This concept calls for a flexible membrane to
be stretched over the mirror. It is held in tension around its periphery to prevent wrinkles. Pads with
variable pressure press the membrane into contact with the surface. The membrane is drawn across
the mirror and under the pads to effect the polishing action. The capability of this concept will
require further investigation.,

The ARC primary mirror for the Apache Point telescope is a large mirror of intermediate f/ratio. It

will be polished by sub-diameter laps, and may be near the smallest f/ratio that can be polished
without resorting to very small or flexible laps.

4-28



3131dNOD
ENERE]) (020

£ G3NNV1d
TVLIN3INdOI3A3a
a3ann4d

1 3131dWOD

SNiviS

62-V

MVAOX NVIWLSY3T - LVNHILTV 1SH 'dVT H3L3IWVIA 1INS g
"ddO0 HIWT3 NDIH3 - LINN LHOITH LSH ‘H3HSINOd G3TIOHINOD HIALNIWOD
AHVNIHd LSYO-NIS ‘W S'€ 1SHI4 IHL 38 TTIM ¢

NOSONL ‘IT00 WHON A8 ONIHSIIOd 2

(NOILOIHLS3H ADOTONHOIL 1HOJXI ON) OW3IA A3ANNJ ISNI30 40 “Ld3a i

ER )

3n

NSOHO8

HNAoy3z

93 YHVHO

3mn

TVIH3LVN

a3isnd

a3isnd

1SYO-NIdS

SNISININ

1SVO-NIJS

a3snd

3dAlL

Ve

ve

S't

8¢

g8t

et

W
vIa

€2

£¢

SL'L

ol

0t

80

olivy/4

gdvV11INd

yd¥1 TIVAS
2dV1H313INvIa-ans
dV1 INVHENIN

dV1 03SS3ylsS

dv11Nnd

QGOHL3N
ONIHSINOd

SHOYHIN AHVWIHd OILVH/d MO HOd ADOTONHOIL ONIHSINIA

J9JUd)) YIIBISIY Sowy

VIdIOS



Concerns and Risks

In the fabrication of the required large, lightweight, primary mirror blank, a strong candidate is the
Kodak/Corning frit-bonded technology. At this time the largest mirror under construction of this type
is 1.2 m in diameter. The combination of substantial size extrapolation, coupled with the f/1
requirement suggests some risk until additional engineering and fabrication has been carried out to
larger sizes. Though the thin meniscus is an alternative technology, here too, the extrapolation to the
desired size at the thickness of 40 to 50 mm is a large jump from what has been accomplished to date.

The finishing technology for a large, lightweight, f/1 primary mirror is limited to the work done at
Kodak on the 1.2 m diameter £/0.8 mirror and the stressed lap development at Steward Observatory.
Neither of these techniques has been applied to a mirror with the low areal density needed for SOFIA.
It is important that the first example was successful and that the second is under active development.
This experience reduces the risk that all new techniques will have to be developed solely for the SOFIA
program. It is possible to reduce the risk in polishing by relaxing either the image quality requirements
or by increasing somewhat the f/ratio of the mirror at some expense in aperture.

It is not yet known what the magnitude of high spatial frequency surface errors in the primary mirror
will mean for the imaging performance of the telescope. Of particular concern is the visible
performance required for the scientific objectives and for the fine guidance sensor operating at the
telescope focus. Further analysis will quantify this aspect of primary mirror quality.

The strength of a lightweight glass mirror is a concern in that the desire to reduce weight tends to
raise stress levels in the material. The main risk is a broken primary mirror from handling or high load
conditions associated with flight, such as a hard landing. Risk can be reduced by increasing the amount
of material in the mirror with an attendant weight or size penalty. There may be a limit on the
maximum web thickness that can be used in the frit-bonded core, however, so that the strength/weight
tradeoff is not clear. It is clear that the meniscus can be increased in thickness quite easily if desired.

The mechanical tolerances associated with an f/1 primary mirror will lead to some stringent error

budgeting for the mechanical and thermal design of the telescope. Focus is the most obvious example,
with an allowance of only 5 microns change in mirror spacing during the time an observation is made.
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Opties Summary
The SOFIA telescope will be a Cassegrain/Nasmyth. It will have a primary mirror of 2.5 to 3 meters

diameter and focal ratio near f/1. The system focal ratio will be adjustable from f/11 to f/18 by
interchange of secondary mirrors. Two secondary mirrors will be supplied designed for £/13.5 and £/17.

The fast and highly curved f/1 primary is called for to fit the telescope within the aircraft. While this
concept has difficulties, it appears they are not insurmountable. Thus a telescope design is feasible
which has the maximum aperture geometrically allowed.

The primary mirror should probably have a paraboloidal figure. Either this, or a slightly hyperboloidal
primary appropriate to a Ritchey-Chretien design, provides the specified image quality over the entire
unvignetted field for wavelengths greater than about 17 microns, and for even shorter wavelengths if
field-flattening optics or curved detectors are used.

Wavefront, focus, and image jitter error budgets have been developed from which mechanical
tolerances have been developed. Some of these tolerances are quite tight given the aircraft
environment. A selection of these have been studied in more detail, results being presented in other

sections of this report. It does appear that all of the tolerances can be met, provided proper design
decisions are made.

A number of technologies have been identified that can be employed in the fabrication of the large,

fast, lightweight primary mirror blank, and in the finishing of the mirror. Nevertheless, fabrication
and finishing remain extremely important areas worthy of study and technology development.
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Secondary Mirrar Chopper Subsystem
Summary of Requirements

The chart shows the top-level performance and configuration requirements for the SOFIA secondary
mirror assembly. The chopper mechanism must provide mirror throw amplitudes from ~10 arcsee to 40
arcmin (2 arcsec to 8 arcmin, object space), or up to +20 aremin from centered position. The
mechanism must also be capable of offsetting the center of the chop from the mirror-centered
position, with corresponding reduction of throw. Chopping must be performed about any axis with TBD
resolution; for this purpose a 2-axis chopper has been baselined over a single-axis mechanism with
rotation. (This technology has been demonstrated and provides more efficient operation.) The
"transition time" (rise time) for square-wave chopping has been specified for the 5 and 20 arcmin
throws, with durations < 5 and 7 msec, respectively. Achieving this performance is expected to
provide adequate capability for the other amplitudes, for which times are not specified. The driving
torque requirement is then derived from the specified transition times for the given amplitudes.
Required maximum chop frequencies are 10 Hz (for 20 arcmin throw) and 35 Hz (for 5 arcmin). The
square wave chop end position stability is specified as < 1% of the chop amplitude. Other required

chop waveforms include sawtooth and "arbitrary" (e.g., sine, u.-_o». ete.); slow scan capability will also
be necessary.

The secondary mirror itself is expected to have a ~30.5 cm diameter, with ~2.5 em thickness needed for
dimensional stability. To minimize thermal and mechanical distortions, low expansion glass or glass
ceramic is the mirror material of choice. The chop/focus mechanism must be "hidden" behind the
mirror (i.e., diameter < 30.5 cm) and a preliminary assembly length requirement of 35.5 cm has been
established. Chopping reaction forces and torques must be held to a minimum to avoid exciting the
Telescope structure; if necessary, a "reactionless” design will be used. Typically, this involves use of a
moving reaction mass which counteracts mirror motion to a high percentage. Since this configuration
requires more power (the actuators must deflect both masses), further structural dynamic analysis is
needed of the chopper/spider/headring assembly to determine if this provision is required. A final
functional requirement is to provide in-flight focusing capability, both to refocus the Telescope for
elevation adjustment, and to provide "focus dither" mirror motions for submillimeter science
investigations.  More detailed specifications for the chopper performance and configuration
requirements will have to be developed in future Project phases.
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Chopper Transition Profiles

In order to calculate the torques required to actuate the chopper, a model of the transition profile is
required. Reasonable models are based on torque pulses which can actually be produced by state-of-
the-art amplifiers. Although it is impossible to produce perfect pulses, a high-bandwidth current
amplifier which incorporates current feedback comes very close, assuming the motor inductance is low
enough so as not to require huge voltages. A sine wave is a very reasonable approximation also, but
will predict higher torques; hence it is a good, conservative approximation.

Pulse widths of 33% of the transition time will not predict as low a torque as for 50%, but
theoretically will minimize the average power losses due to resistance in the armature circuit.
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Inertial Torque

This chart was calculated using the transition profile formulas gn the previous sheet. Assuming a
mirror can be made with a moment of inertia (MOI) of .015 Kg-m*, a torque of about 1.1 N-m/arcmin
will be required to transition in 5 msee. In terms of sizing the actuators, assuming an actuation radius
of .1 m and a 5 aremin amplitude, two actuators which can produce 28 N each will be required for
chopping along an actuator axis. To meet the 20 arcmin at 7 msec requirement, 57 N per actuator are

required. Actuators in this range are readily available. A small additional spring torque should be
considered before choosing the actuators.
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MOQOI Reduetion

To reduce the mirror moment of inertia to as low a value as possible, it is important to machine away
as much material near the perimeter of the mirror as is practicable. Based on a combination of
tapering and "open-back" machining, it is possible to reduce the MOI to 60% of its original value,
although a complete structural analysis should be performed to ensure that the mirror has not been
weakened oxom«&i&%. Starting with a 4 kg blank of fused Silica, one should be able to get a MOI of

about .015 Kg-m*“,
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Chopper Bandwidth Selection

The control system bandwidth must be chosen carefully to ensure that enough harmonic content is
available to produce the desired chopping response. An analysis of a classical second-order step
response is a suitable method of determining bandwidth.

A note about rise time and settling time: classical rise times are often quoted as the time to transition
from 10-90% of the step, however overshoot may also occur after the rise time. Settling time is
better suited for defining chopper performance since it is the time required for the step to reach the
goal value within a defined error.

To meet SOFIA specifications of a 5§ msec transition time with 1% error in the final value, a bandwidth
of 225 Hz is required at a damping ratio of .7. This is consistent with bandwidths quoted for similar
systems. Notice that bandwidth is a function of damping ratio. Lower damping ratios will require
higher bandwidths to achieve the same settling time.
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Stiffness in the Chopper Mechanism

From a survey of various existing chopper systems, one point of general agreement is that the stiffness
and damping of the chopper mechanism, in particular the motor-mirror junction, must be high enough
to avoid any structural resonances that will cause problems with controlling the mirror. Traditionally,
any structural resonances should be 5 times higher than the desired system bandwidth.

A simple chopper dynamic model was analyzed to understand more fully the effect that unwanted
resonances might have on the control system. A simple control system model was used to study the
performance. Both position and velocity feedback are incorporated. However, a performance
comparison is made between velocity feedback at the mirror itself, and velocity feedback directly at
the motor. A simple compensator is used to achieve the desired bandwidth of 225 Hz. Parameters
reflecting a possible SOFIA chopper configuration were chosen and results were generated for both a
moderately stiff and compliant motor-mirror junction with .05 damping.
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Chopper Mechanism - Moderately Stiff System

(Velocity Feedback at Mirror)

A resonance near 1900 Hz is apparent from looking at the Bode diagrams -- a factor of 8.4 higher than
the desired bandwidth of 225 Hz. (This value is a little higher from the one calculated for the resonant
frequency of a single actuator mass, spring, damper because the system is excited in a push-pull
fashion so that the eigenvalues are for two actuators as if they were tied together.)

The root locus plot for the velocity loop shows how the system moves towards instability as an attempt
is made to increase the velocity loop gain. It is impossible to increase the damping to a sufficiently
high value and therefore the closed loop bandwidth cannot be achieved at the required damping ratio of
.7. If the position gain is increased in an attempt to achieve the bandwidth (the case as shown), the
damping ratio drops too low to arrive at the required settling time of 5 msee. It is not possible to get
the desired performance under these circumstances.

The only other compensation option is to introduce a notch filter at the resonant frequency. This will
work assuming the resonance does not move significantly. Indeed this was the solution for the Kitt
Peak Observatory chopper system.

The best solution is to ensure that all system resonances are either high or well damped and to
feedback the velocity at the motor instead of the mirror as shown in the following example.
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(Velocity Feedback at Motor)

A substantial increase in the performance of the system is achieved when the velocity feedback is
taken from the motor rather than the mirror. Note that the position feedback is still taken from the
mirror itself in order to maintain high positioning accuracy. The overall effect is similar to
introducing a notch filter into the system, in that the poles are no longer drawn across the imaginary
axis when the gain Kv is increased. |t now becomes possible to introduce enough velocity gain into the
system to achieve high bandwidth in the velocity loop. In turn, it is possible to get exceptional
performance in the position loop so as to meet the required specifications.

Therefore, by simply taking the velocity feedback from the motor rather than from the mirror, the
resonance at 1900 Hz presents no major problem to the control system.
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Chopper Mechanism - Compliant System

(Velocity Feedback at Motor)

A 600 Hz resonance is close enough to the desired bandwidth of 225 Hz to cause potential problems
with the control of the system. However, because of the fact that the velocity has been fed back at
the motor rather than the mirror, the additional zeros make it possible to introduce enough gain into
the velocity loop. An excellent response can still be obtained.

If velocity sensing had not been used, a similar response could have been simulated using a more
complicated compensator which would incorporate a noteh filter. In practice, however, it would be
more desirable to keep the compensator electronics as simple as possible and let "nature" produce its
own notch filter so as to arrive at a robust control design.

The control ideas shown here are not intended to be a final design but only to suggest the use of
velocity feedback at the motor. A more practical controller would be designed to follow a transition
trajectory as outlined beforehand -- maximum torques would then fall within the values previously
calculated. The use of velocity and force feedforward have been demonstrated successfully by others
in reducing the burden on the control system.
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Structural Excitation

A torque forcing function was generated to investigate the dynamic response of the telescope spider
support structure and give a basis for deciding the need for a reactionless chopper system. The first
nineteen modes of a unit pulse torque function (as described earlier in the discussion of transition
trajectories) were computed. A verification of the time response representative of the 19 modes is

shown. A NASTRAN structural model will provide the transfer function to compute angular
misalignments and decenter at the chopper mounting location.
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A NASTRAN model of the chopper mount and spider structure provided frequency response data which
were useful in determining the deflections of the structure. The frequency response shown in the
lower left hand plot indicates the magnitude of x-rotation (detilt) as a function of a unit amplitude
torque about the x-axis. Resonances near 80 and 200 Hz are apparent.

The response of the structure as a function of chopper frequency is represented as RMS deviations in
rotation and decenter for an excitation axis angle of PHI=0 and 45 degrees, as indicated by the four
graphs to the right.

Responses were calculated by taking the Fourier components of the unit torque function and scaling
the fundamental and harmonics according to the echopper frequency. The resulting harmonic sequence
was then multiplied by the transfer function and then converted back to the time domain. RMS
chopper mount deflections were then computed from the time series.
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Jditter Resnlts

Expected ana:::m. torques are computed for the original SOFIA specifications by assuming a mirror
MOI of .015 Kg-m* and using the previously computed torque chart.

A conservative mu,n._:::m for jitter is obtained by selecting the highest peaks of the response curves on
the previous page and scaling them by the computed torques.

The jitter estimates are close to the levels allowed in the optical error budget. With minor structural

changes, the jitter values could possibly be reduced to very conservative levels so that the use of a
nonreactionless chopper can be seriously considered.

4-56



wt ' Z29adsg
wrly wr z2° 1-0adg
peyr 9y 29ads
peyr p°g pedr 6°¢ 1-0ads
jobpng Joiig /uIr
SLINS3d y3aLlr

w-N p'LL Jasw/ ujwose og ZH OL-L

Ww-N GG Jaswg ujwose g ZH GE-1
anbioIxeyy dwil asiyg MoIgg Sapouanbailj

LS-v

NOILVLIOX3 TvHNLONYLS

SEMIELET

uoliejoy

JIIUI)) YIIBISIY Sowmy

VIid QS



Reactionless Conpepts

Three concepts for reactionless designs are noted here:

Concept one may have several different geometries, but the essence of the design is the fact that a
contrarotating mass has been mechanically linked to the mirror with some gear or lever system in such
8 way that its displacement is in proportion to that of the mirror. The reaction masses and gear ratios
are carefully chosen so that the net angular momentum is always zero. This concept is unique in that,
if desired, the center of the mirror need no longer be constrained by a pivot point. This allows the
possibility of dithering the focus by small amounts along the optical axis. The lever arrangement in (1)
is particularly useful in a two-axis design where 3 or 4 arms may be arranged in a radial fashion. A
candidate Lockheed design utilizes three rocker arms. Even with three arms, the angular momentum
can be made to sum to zero for any arbitrary axis of rotation. Several disadvantages become apparent
from a closer look at the practicality of such a device. The levers add complexity to the design and
introduce the possibility of too much compliance in the system. Care would have to be taken to make
the mechanism extremely stiff and well damped. Also, additional torque is required to move the lever
arms.

Concept two is an obvious solution to the problem; however, twice as many actuators are required and
care must be taken to ensure perfect synchronization between the two inertias. The Kitt Peak chopper
design is of this sort, however the designers found it difficult to implement in a two-axis version,
Apparently, difficulties were encountered in precisely locating the axis of rotation at the center of
mass of the mirror and reaction mass. Even slight misalignments substantially degrade the
performance.

The third concept was implemented in a single-axis form with great success by the designer of the
Palomar chopper. In this arrangement, the same actuation torque is required as for its nonreactionless
counterpart, regardless of the size of the reaction inertia. However, the reaction Inertia should be
made as large as possible to limit the required stroke of the actuators. A flex pivot gimbal system
suspends both the mirror and the reaction masses at precisely their centers of gravity. The natural
frequencies of the mirror and reaction mass should be carefully matched to achieve effective
momentum compensation. This design offers the option of interchanging the mirror because precise
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Existing Chopper Systems

Muitiple Mirror Telescope (MMT)

There are actually several secondaries which are designed to chop in perfect synchronization at this
facility. In order to achieve this capability, a fairly straightforward single-axis chopper was
conceived. A low moment of inertia mirror made of fused silica makes it possible to achieve the
relatively fast rise time of 3 msec. The control engineer claimed that the average power at the
actuators was much less than 50 watts, but could not recall the exact figure. He did not recommend
designing a home-built actuator, as they did, because of the complexity of this task. Rather, use of
commercially available rare earth voice coil actuators is encouraged (Kimco, Ling, Schaeffer

Magnetics, etec.). The low MO! and fairly rigid telescope structure made a reactionless design
unnecessary.

The control system is a very simple analog type I design which incorporates velocity feedback. The
designer recommends avoiding velocity sensors and instead differentiating the position signal. In
practice, the researchers prefer to accept a small amount of overshoot (less than 5%) in trade for a
fast rise time (0-100%). A major problem to overcome was that of too much compliance in the
system. Very stiff flexures at the motor-mirror junctions are used.

Kitt Peak National Ohservatory (KPNO)

This larger diameter (40 cm) chopper is a two-axis unit which performs quite well at a rise time of 3
msec. In order to keep the MOI from being too large, the mirror was lightweighted by cutting the
mirror in half, machining out material, and bonding it back together. The chopper was originally
conceived to be a reactionless design utilizing a duplicate reaction mass actuated by the same signal,
however problems occurred with internal structural resonances and imprecise rotation, and true reac-

tionless performance was not realized. The design was abandoned. The designer feels that it is not
worth the effort to attempt a two-axis reactionless design.

The main center flexure is a fairly large gimbal arrangement which utilizes flex pivots. Because it is
quite bulky, the mirror is forced to rotate slightly behind its center of mass. Stiffness in the motor-
mirror coupling was a problem. A 400 Hz resonance problem was successfully reduced by the use of a
notch filter. Moving coils attached to the mirror were used; however, moving magnets are recom-
mended by the designer to reduce heat transfer problems and provide for a stiffer coupling arrange-
ment.

The designer recommends an all analog control system because of its simplicity. A type Il servo

System was used and achieved a bandwidth of about 200 Hz. Contrary to MMT, veloeity sensors are
recommended. About 20 watts average are dissipated at the actuators.
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Palomar

This very successful single-axis reactionless design uses a thin Beryllium mirror to achieve a low MOI.
This very stiff system has virtually no inertial resonance problems. The voice-coil actuators are
mounted on a much higher MOI reaction mass which is also suspended by flex pivots. Stiff flexures
attach the actuator to the mirror.

Successful reactionless performance is achieved even beyond 80 Hz and researchers are able to operate
the chopper at any desirable frequency. The designer estimates that torques on the order of .1% are
transferred to the structure. He admits, however, that a two-axis system would be much more diffi-
cult to construct because of the added difficulty in making a stiff two-axis gimbal. He recommends
using as high a reaction mass MOI as possible. The control system is a very simple lead/lag type I
design. No velocity sensors were used.

Linited Kingdom Infrared Telescope (LIKIRT)

This is a very large system for the James-Clark-Maxwell mm Telescope. The very large diameter
(75em) and thin (3mm) aluminum mirror is rigid enough by virtue of its high parabolic profile and
support by a stiff rim. Four large (30 cm long) Ling Shaker motors are used. Motor-mirror couplings
are essentially 3mm wires which are tightly clamped and provide enough stiffness to perform well.
The control system is the only digital design which was encountered. A 6809 microprocessor executed
a very sophisticated adaptive control algorithm.

Lockheed Missiles and Space Company (LLMSC)

This large mirror fast pointing system was not designed specifically as a chopper, but incorporates
some unique ideas which might be suitable for a two-axis reactionless chopper. This is the only design
investigated which doesn't use a voice-coil type actuator. The so-called electrodynamic actuators are
really rocker arms which operate like a segment of a series-wound motor. The designer takes advan-
tage of the angular momentum of the rocker arms to compensate for the angular momentum of the
mirror, resulting in a thin reactionless design concept. Three of these arms support the mirror from
behind without the use of a center gimbal arrangement. A 95% reactionless performance is claimed.
Although in the present design the actuators extend beyond the mirror periphery, the designer claims
that they can easily be designed to fit completely behind the mirror. This unit has the possibility of
focusing and dithering, as well as chopping, with the same mechanism. The rocker mechanisms are
quite complicated however, and the cost of producing such a design may be significantly higher than
others. The control system incorporates an analog type I PID controller with only position sensors. A
microprocessor generates position, velocity and force trajectories. By using velocity and force feed-
forward, a very accurate trajectory can be followed, virtually eliminating any overshoot.
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Conclusions and Recommendations

Expend a reasonable effort to reduce the moment of inertia of the secondary mirror.

Experience’ .of others indicates that internal structural resonances cause severe jitter
problems. Care should be taken to resolve this problem by:

- Keeping the mechanism simple

- Paying particular attention to the stiffness of the motor-mirror juncture

- Using a voice coil configuration which eliminates the motor-mirror flexure

A simulation which includes the flexibility of the motor-mirror juncture indicates that there is a
significant advantage gained in controlling the chopper if velocity feedback is taken from the

motor rather than at the mirror. Position feedback should be taken from the mirror.

Structural calculations indicate that a reactionless system may not be a requirement.
Preliminary results show that jitter may be very close to the allowable amount.
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4.2

SOFIA Telescope Structure
Scope

The SOFIA S_aumovm structure includes all structural elements that are inertially isolated from the
aircraft pitch, yaw, and roll movements. The structure elements falling within this category are
described as follows.

The telescope supporting structure is referred to as the centerpiece. It is that portion of the structure
that the telescope is mounted on/in, and is the primary structural element of the telescope system.

The primary mirror supporting structure is that portion of the structure that the primary mirror is
mounted to, and connects the primary mirror to the metering structure.

The metering structure is referred to as the metering tube since the current concept is a large tube.
The metering tube connects the primary and secondary mirror supporting structures to each other.
The metering tube is supported by the centerpiece structure.

The secondary mirror support structure is that portion of the structure which mounts secondary mirror
and chopper. This includes the headring and spider assembly.

The instrumentation and counterweighting support structure is referred to as the instrumentation
flange. The instrument flange is the structure that supports instrument packages in the Nasmyth
configuration, and supports counterweights for the balanced design.

The airbearing shell and connecting structure are defined to be the outer spherical shell of the
airbearing and the cylindrical connecting structure between the instrument flange and the airbearing,
and between the centerpiece and the airbearing.

Excluded from this scope is the stator portion of the airbearing and the vibration isolation system,

which are described in Section 4.3. The primary mirror support structure is addressed at the end of
this section (4.2).
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There are three major requirements for the SOFIA telescope structure, weight, size, and stiffness or
dimensional stability.

The entire telescope system has been given a weight budget of 30,000 1bs. The telescope structure as
defined in the scope represents approximately 2/3 of the telescope system. Therefore, the telescope
structure should not weigh more than 20,000 1bs, including the weight of the primary and secondary
mirrors.

The physical size of the telescope structure must be large enough to rigidly support opties for a 2.75-
3.0 m {/1 telescope. However, the size of the structure must fit within the available aircraft cavity
volume including all desired movements of the telescope.

The telescope structure must have a first mode natural frequency that is high enough to avoid
structural resonance induced by cavity wind loads or aircraft vibrations. The high first mode is also
necessary to avoid instability problems in the pointing control system.

The telescope structure must have very high dimensional stability so movement of optical components
mounted in the structure will be within values specified for the error budget. This includes de-focus,
de-center, and de-tilt of the secondary mirror relative to the primary under gravity, dynamic and
temperature loads.
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SOFIA Telescope Conceptual Design

The conceptual layout of the SOFIA telescope system is modeled on the KAO. As a result, the concept
for the SOFIA telescope structure follows the KAO telescope as well.

The centerpiece is the main supporting structure for the telescope. It is a welded or bonded plate
structure as in the KAO design, except that the plates have varying thickness. This type of design
provides a very stiff structure with minimal weight.

The metering structure for the SOFIA telescope is a tube and not a truss as on the KAO. The metering
tube extends through the centerpiece and is rigidly mounted to the top surface of the centerpiece.
However, it is mounted to the bottom surface of the centerpiece such that movement of the metering
tube relative to the centerpiece is allowed in the axial direction only. This allows the centerpiece to
be constructed of materials with a high coefficient of thermal expansion such as aluminum.

The primary mirror support is a bonded plate structure. This is again done to provide a light, stiff
structure. The primary mirror support is mounted to the bottom of the metering tube with a flange
arrangement to facilitate removal of the primary mirror.

The headring and spider assembly is a box section ring with flat plate spiders supporting secondary
mirror/chopper. The assembly is not flat as is conventional, but is crowned so that the top of the
headring is lower than the secondary mirror. This is necessary for clearance in the aircraft cavity.
The headring is mounted to the top of the metering tube with a flange arrangement to facilitate
removal.

The instrument flange is also a welded plate structure. The instrument flange does not have to be
designed for lightness since it provides some counterweighting itself as in the KAO. However, the
majority of counterweighting is provided with movable weights located on the lugs. This allows the
structure to be balanced about the center of the airbearing with less weight overall.

The instrument flange and centerpiece are connected to the airbearing structure with flange

interfaces. The airbearing sphere is-considered to be a spherical shell for the purposes of structural
analysis.
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Components of Structural Analysis Model

For structural analysis of the telescope, a finite element model was created for analysis with
NASTRAN. The model consists of five major components: the centerpiece; metering tube, headring
and spider assembly; the primary mirror support; the airbearing shell and connections; and the
instrument flange. The components are separated this way because each component was developed
independently and added to the structure in the order listed.

The centerpiece is modeled as an aluminum plate structure with internal stiffeners. The plate ranges
from 2.25 to 0.045 inches thick. This was done using an optimization routine to keep the first mode
natural frequency as high as possible while minimizing the weight.

The metering tube and primary mirror support are modeled as plate structures with the material being
graphite epoxy composite and honeycomb sandwich. The material will be discussed in more detail
elsewhere in this report. The headring is a box section ring and is modeled with 1-inch thick flat plate,
as are the spiders. The material for headring and spiders is modeled as graphite epoxy composite with
the same layup as for the sandwich material.

The airbearing and connecting structure are modeled as 2 inch thick Invar plate. The spherical shell
was found to have more than sufficient stiffness, so no internal structure was assumed for the
airbearing sphere.

The instrument flange is modeled as an aluminum plate structure with internal stiffeners. The plate is

2 inches thick. No attempt is made to reduce the weight of the instrument flange since it acts as part
of the counterweight.
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Honeyeomb Core Composite Sandwich Model

The composite sandwich material that was used extensively for modeling components of the telescope
structure was chosen in part to take advantage of unequal coefficients of thermal expansion as well as
low thermal expansion and weight.

The ply lay-up was chosen to try and match the coefficient of expansion of the aluminum centerpiece
in the radial direction and have a coefficient close to zero in the perpendicular direction. A basic set
of 0, +45, and 90 degree orientations were chosen for ply directions. Then the number of plies in each
direction was chosen to match the desired thermal expansion. The material model that was used does
not currently meet the requirements, and ply orientations other than 0, +45, and 90 should be used in
future design efforts.
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Integrated Structural Model

The integrated structural model is made up of the components discussed previously. All of the
components are rigidly meshed together except for the bottom centerpiece to metering tube

connection. This connection allows translation of the metering tube relative to the centerpiece in the
vertical (or z) direction.

The primary mirror mass is modeled as a concentrated mass with principal moments of inertia

included. The mirror weight is distributed to points on the primary mirror support with a rigid body
element that adds no stiffness to the structure.

Other concentrated masses are used to represent the secondary mirror, tracker telescope, and
counterweights.

It should be noted here that the integrated model shown here includes the torquer mounts. Although
these are not included in the scope of this discussion, they were necessary for determining the control
system response between the torquers and guidance gyros and tracker telescope.
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Analysis of Telescope Structure

Analysis of the telescope structural model was done using NASTRAN. The types of analysis performed
were normal modes, deflections under gravity, dynamic loads, temperature loads, and additional
analysis for chopper and control system design investigations.

The normal modes analysis was done to determine all modes and their deflected shapes under 100 Hz.
The first mode frequency is a measure of structural stiffness. The other modes are useful for
predicting pointing control response and structural resonance problems.

A static load consisting of a gravity force was applied with the structure oriented at elevation angles
of 20 to 60 degrees. This was done to investigate the stability of the secondary mirror de-focus, de-
center, and de-tilt relative to the primary mirror as a function of telescope elevation.

A dynamic load using a sinusoidal forcing function with a -25g amplitude at a frequency of 1Hz was
applied to the structure with the telescope oriented at 40 degrees elevation. This was done to
investigate secondary mirror jitter in de-focus, de-center, and de-tilt relative to the primary mirror.
This loading condition is used to simulate maximum acceleration of the telescope.

A temperature load representing a 25 degree F change in temperature was applied to the entire
structure. This was done to investigate stability of secondary mirror de-focus, de-center, and de-tilt
relative to the primary mirror as a function of temperature fluctuations.

function between torquer locations and guidance gyro and tracker telescope locations was determined
to help pointing control analysis. Also, frequency response of the headring and spiders to secondary
chopper input torques was determined. This was done to determine if and to what degree a
reactionless chopper would be necessary.
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Telescope Structure Goals and Paramesters

The goals and parameters are derived from the major requirements, and specific alignment
requirements for the telescope optics.

The goal weight of the structure is 20,000 lbs, including the opties. This is approximately 2/3 of the
weight budget for the telescope system as described in the major requirements.

The first mode natural frequency goal of 25 Hz was set after initial models showed that values

significantly higher than this would not be attainable within weight and size restrictions for the
structure.

The parameters for de-focus, de-center, de-tilt, and line of sight were determined from error budget
limits set by the optical design.
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Results of Normal Mades Analysis

The lowest modes of interest are the 4th, Sth, 7th, and 8th natural frequencies for the structure. The

first three were excluded because they are rigid body modes that result from allowing rotation about
the three axes, and 6th because it involves only localized movement in the structure.

The lowest natural frequency for the structure is 27.1 Hz. The mode shapes for the four modes of
interest are described below.

The 4th mode, at 27.1 Hz, is a lateral dumbbell mode. It is so described because the structure takes on
a dumbbell shape, bending laterally about the airbearing sphere.

The 5th mode, at 27.5 Hz, is a vertical dumbbell mode. In this mode the secondary spiders extend
upward in the same direction of travel as the telescope.

The 7th mode, at 33.4 Hz, is another vertical dumbbell mode. However, in this mode the secondary
spiders extend upward in the opposite direction of travel from the telescope.

The 8th mode, at 50.8 Hz, is a twisting mode. It is so described because the structure twists about the
elevation axis of the telescope.
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The de-focus vs elevation angle curve

was constructed assuming that all de

telescope at 40 degree elevation angle. Therefore,

raised and lowered from 40°. The de
This represents a de-focus stability of

-focus ranges

5.22 micron against an error budget stabi
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Results for De-center vs Eleyation Angle

The de-center vs elevation angle curve is constructed in the same manner as the de-focus curve. The
magnitude of de-center is calculated as the root sum square (RSS) for de-center in the X and Y
directions, so all de-center is shown as positive. The magnitude of de-center ranges from 7.9 microns
at 60° elevation to 9.1 microns at 20°. Therefore, the de-center stability due to elevation changes is
9.1 microns compared to an error budget absolute limit of 50 microns.

4-86



L8-V

JTONY NOUYATTI
14 < oc <c or Sh as 09
1 1 1 “ 1 1
sa ez B

60089

UDOW O & 1]UCS-e( SEMOYY Yoy

JTONV NOILVA3T3 SA HILN3IO-3A

NOUJIN NI MELNID-3a

JIJUI)) YIIEBISIY Sowy

VIidQS



Results for De-tilt ys Elevation Angle

The de-tilt vs elevation angle curve is also constructed in the same manner as the de-focus curve.
Also, X-axis and Y-axis de-tilt have been combined in the same manner as for the de-center curve.
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Results for Dynamic Load of .25¢ at 1Hz

The de-focus, de-center, and de-tilt for the secondary mirror relative to the primary mirror were
determined for the dynamic loading case.

The de-focus for this load is 1.9 x 10~% microns compared to the error budget stability limit of 5
microns.

The de-center jitter for the dynamic load is 9.8 x 10~2 micron. The error budget limit for de-center
jitter is 1 micron.

.-.:mam-:_:.zo_.nonz_onw.:na-o_onn_n».uan;-u arcsec. The error budget limit for de-tilt jitter is
0.5 arcsec.

The line of sight (LOS) change due to the dynamic load is 6.65 x 1072 arcsec. The jitter limit for LOS
change is 0.15 arcsec.
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Results for Temperature Load

The de-focus, de-center, and de-tilt of the secondary mirror relative to the primary mirror were
determined for the temperature load as well.

The de-focus stability for temperature changes is 70.5 microns. The error budget limit for de-focus
stability is 5 microns.

The de-center thermal stability is 8.0 microns, compared to the error budget absolute limit for de-
center of 50 microns.

The de-tilt stability is 0.71 arcsec, compared to the error budget absolute limit for de-tilt of 60
arcsec.

4-92



€6~V

91 JO HOLIV4 V A8 LIWN ALITIGYLS SQ330X3 SND04-30

O3SOHY 09 - O3SOHV 120 1711-3a
NOHOIW 08 - NOHOIW 108 ¥3IN3O-30
- NOHOIN § NOUOIN S0 SN204-3a

LINN 31N70S8Y LINM ALNIBVLS 1INs3y H3LINVHYd

JONVHI d.5¢ 40 AVO1 FHNLVHIdWIL HO4 S11NS3H

12JUI)) YOuIBISIY Samry

VIdIOS



Telescope Structure Moment of Inertia

The moment of inertia matrix for the structure is as shown in the table. The values include the mass
of the primary and secondary mirrors, counterweights, tracker telescope, and airbearing spherical
shell. There is no goal value or parameter for the MOI matrix, so it is presented primarily for

information. However, a relative idea of the mass distribution and pointing control torque motor
requirements can be determined from the MOI matrix.
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Telescope Strueture Summary and Conelusiong

The results of analysis on the structure are summarized in the following paragraphs.

The weight of “the conceptual structure design, including primary and secondary mirrors,
counterweights, and tracker telescope is 13,750 1bs. This does not include the weight of the airbearing
spherical shell. The weight is well within the weight goal of 20,000 lbs.

The first non-zero normal mode frequency is 27.1 Hz. This is above the minimum goal of 25 Hz. It is
believed that the stiffness of the structure as represented by the 27.1 Hz lowest mode is sufficient to
avoid structural resonance as well as pointing control problems.

De-focus, de-center, and de-tilt are within stability limits through the full range of pointing
elevations. This means that no adjustment of the optics is necessary due to large changes in pointing
elevation during sighting.

De-focus, de-center, de-tilt, and line of sight are within jitter limits for dynamic loads on the
structure. Therefore, the conceptual design is stiff enough to keep the optics in alignment during
flight. However, this does not take into account cavity wind loads on the structure, which are still
unknown.

De-center and de-tilt are within stability limits for a temperature change 20°F on the entire
structure. However, the de-focus is not within stability limits for the temperature change. Therefore,
the conceptual design would require re-focusing the optics during sighting if changes in cavity air
temperature were encountered.

Finally, the conceptual structure design is large enough to support optics for a 3 m, /1 telescope, and
still fit within the aircraft cavity space in a static sense. The dynamic envelope of the telescope
relative to the cavity volume constraint requires further investigation.
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Telescope Structure Open Issues

The de-focus stability requirements for the current model can be met if the temperature change
experienced by the telescope during viewing is less than 1.5°F. However, since the predicted
temperature change can be as high as 20°F, more work is needed in this area to preclude possibly
frequent refocusing.

There are two issues regarding temperature stability. First, the composite material used to model the
metering tube and other components does not have the desired thermal expansion properties. Second,
temperature loadings that represent transient state conditions as predicted by thermal analysis have
not been applied to the structure.

The composite material issue is a matter of ply layup design. Although the material used for the
conceptual model does not have the desired thermal properties, it is reasonable to believe that a layup
design that does can be developed. Since this is considered to be a problem to be addressed in the
design phase it has not been addressed here.

The issue of transient temperature conditions cannot be addressed until the material problem is
considered further. However, under transient temperature conditions the temperature change of the
composite metering tube is greater than that of the aluminum centerpiece. This is advantageous since
the radial coefficient of expansion of the metering tube is less than that of the aluminum
centerpiece. Therefore the issue of transient temperature loads is not considered to be as important
as the material issue.

The wind loading issue is that of not having representative wind loads applied to the structure. This is
most important when considering the evaluation of the tube type metering structure. The metering
tube has substantial surface area compared to a truss type metering structure. Wind loads on the
spiders is an important issue as well.

Although evaluation of wind loads on the metering tube could suggest that a truss type metering
structure is better, replacing the upper portion of the metering tube with truss would not change the
overall structural concept appreciably.

Wind loading on the entire structure is an issue as well. Because cavity wind loads on the structure
could possibly be cyclic in nature, they could induce resonance of the structure if the frequency of the
load is near a natural frequency of the strucutre. However, the lowest natural frequency of the
conceptual telescope structure is reasonably high, reducing the possibility of such an occurrence.

4-98



66-¥

JHNLONYLS O4 A31ddV HO

(03d40T3A3Q N334 10N 3AVH SAVOT ANIM 3AILVINISIYLIY - ‘ONIGVOTANIM -

JUNLONYLS JHL O1 A3ddY
N338 LON 3AVH SNOLLIONOD VO 3UNLVHIAdWAL INJISNVHL -

AGQNLS H3HLYUNS SA33IN FONVHO
JHNLVH3IdINTL O1 3NA ALINIBVLS FOVINI - ‘ALAVLS 3YNLVHIdNIL -

S3ANSSI NIdO IFHNLONHILIS Id0ISIATIL

JJUI)) YIIBISIY Sawy

VIidOS



gﬁ:gg

This subsection comprises a design deseription of a mirror support system for the baseline SOFIA ULE
Square-webbed mirror. The chief design problem is in structurally supporting the mirror in such a
fashion that the mirror figure requirements are met. Factors that affect mirror figure distortion are:

. Gravity and changes in the direction of gravity with respect to the mirror axis due to changing
elevation angle (20 to 60 degrees)

. Temperature changes and temperature gradients in the mirror support frame
. Dynamic loading of the mirror or its support frame, where the sources of dynamic loading are:
. Aircraft platform vibration that is transmitted to the mirror structure
. Air pressure variation (static and dynamic): 1) directly on the mirror or mirror support

frame, and 2) on the telescope structure which accelerates and dynamically deforms the
telescope and in turn accelerates and dynamically deforms the mirror support frame

It is not practical at this stage of analysis to relate each calculated mirror figure directly to image
quality. As a convenience of structural analysis, the following criteria of acceptable distortion have
been used for guideline purposes:

. That the root mean square of distortion in the mirror axis direction from the desired figure __:
points along any curve of constant radius (as illustrated on the upper left-hand sketch in the
chart) should be < 0.21 um

. Similarly, that the rms axial distortion along any straight line that bisects the mirror axis (as on
the right-hand sketch) should concurrently be < 0.21 ym

Guidelines used for maximum time variations of the axial position of the mirror and mirror tilt are 0.5
um and 0.05 arcsec, respectively. -

Calculated mirror distortion for various operational conditions is shown on subsequent pages. It should
be mentioned that the magnitudes of highly local distortions are subject to some inaccuracy due to the
method of modeling, however the errors are not of such magnitude that the general conclusions of this
section are misleading. For the calculational result of mirror distortion given below, it was assumed

that the mirror was polished to the desired figure with its axis vertical and with its backplate lying
against a flat, rigid plate.
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Primary Mirror Made]

The chart illustrates the dimensions and construction of the "baseline" SOFIA primary mirror, which
was used to develop the support system concept. This mirror design is based on an extension of the
lightweight, optical quality Hubble Space Telescope primary, and consists of a ULE faceplate,
backplate, and outer ring, "frit-bonded" to an inner square web of the same material. More
information regarding the primary mirror concept is found in Section 4.1.

VS 1Y,



£0T-¥

ONIY
_‘l v 00'E \v_

O P #
i T 31v14 %0va
“u mo

w oot
1s0d a3IM
wosto M7 —l*—wg00 vid wwwu
WWI e .
vwwww oNid HINNT __ It
wgo
=l
\
/
S 7 .
\ / N

83M JHVNOS HILINVIA W 0 - HOHHIN AHVWIHd VIJOS 3ININ3SVd

d3JUI)) YIIBISIY Sowmy

VIdIQS



Axial Support of Mirrar

The axial support system comprises an array of supports that interface with the backplate of the
mirror. At each interface location, a predetermined force is applied by the support member to the
contact area of the backplate. At three of the interface points, the support member is rigidly
connected (hinged) to the backplate, and the remaining interface areas are in simple compressive
contact (i.e., the mirror is resting on the supports). The three-point rigid connection prevents mirror

dislodgement under abnormally large aircraft acceleration and also relates to control of dynamic
mirror response.

The force is applied at each interface by a pneumatic piston, one piston for each support point (details
of the pistons are given later). In general, the required applied force depends on the radial position of
the support point, and the applied force also must be varied with the sine of the elevation angle.

Mirror distortion was analytically evaluated for a variety of axial support arrangements. The total
number of supports was varied from 9 to 48, and various spatial distributions of support points and
various distributions of applied force at the support points were examined. The results given in this
section are based on one arrangement only; the distortion from this arrangement was judged to be a
suitable fraction of the distortion budget. This system comprises 48 support points as configured on
the chart.
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The contours on the opposing page indicate distortion in the mirror axis direction caused by the axial
component of gravity. The contours are for the median elevation angle of 40 degrees.

It can be seen from the contours that the mirror departs from the desired figure by no more than 0.090
um. Footprints from forces applied through each backplate support point are also evident, although the
magnitude of the footprint distortions are small compared to global distortion. Global distortion can
be reduced by manipulating the spatial and force distributions of the 48 supports, but this tends to
increase the magnitude of footprint distortion, and the results given represent a compromise between
the two types of distortion.

The axial support configuration has not been optimized with respect to mirror figure (or image
quality), aithough the dependence of distortion on the number and arrangement of support locations has
been systematically explored. On the basis of current results, it is thought that an acceptable
distortion will not be achievable with significantly fewer than 48 axial supports.

Various calculations of root mean square distortion have been obtained. Calculations of rms distortion
from points along circumferential curves (curves of constant radii) indicate a worst case of 0.02 pm (at
radii of 115 em and 129 em). The largest rms distortion along radial spokes is 0.06 um, and the rms for
the entire mirror is 0.06 um.

The most severe distortion due to gravity in the axial direction is for the elevation angle of 60

degrees. For this case, the worst circumferential and radial rms distortions are 0.03 and 0.08 um,
respectively. These rms distortions are well below the total budget guidelines given earlier of 0.21 ym.
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Transverse Support of Mirror

The component of gravity perpendicular to the mirror axis (the transverse component) causes a mirror
figure distortion of non-axisymmetric character as well as a transverse displacement of the mirror
faceplate with respect to the backplate (a web shearing). For large, webbed mirrors, a transverse
support system is used to minimize this distortion and displacement; commonly, transverse support
systems are designed to interface with the mirror at numerous locations on the mirror web, typically
at the local c.g. between the backplate and faceplate for each location (see references for Apache
Point, Kitt Peak). For the baseline SOFIA mirror, various problems were anticipated with web
interface designs, primarily because of the comparatively small thickness of the webs (0.075 in). It
was thought that an impractically large number of support locations with large contact areas would be
required, and that this in turn could lead to substantial problems of alignment. Consequently, a design
concept wherein the mirror is supported along the comparatively stiff outer peripheral ring was
explored, and a successful support system of this design was developed.

An illustration of the transverse support configuration which provided the best overall result to date is
given on the opposite page. The system comprises twelve support locations which are distributed at 20
degree-of-arc intervals along the upper and lower perimeter. The direction of the forces applied to
the mirror at these contact points is opposite to the component of gravity in the plane of the mirror,
and the contact points are located in the c.g. plane of the mirror. The mirror distortion was found to
be minimum when the magnitudes of the applied force at each contact point were equal or near
equal. Similar to the axial supports, the applied force must be varied with elevation angle, in this case
with the cosine of the angle. For an elevation angle of 40 degrees, for example, the magnitude per
transverse support point is 107 1bs.
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Contours given on the opposite page indicate mirror distortion in the axial direction due to the

component of gravity in the transverse direction. The contours are for the median elevation angle of
40 degrees. "

A prominent characteristic of the contours is that the most significant distortion occurs near the
mirror edge adjacent to the supports, and that the distortions shown on the right side are identical but
of opposite sign (direction) to those on the left. At a glance, the worst rms distortion appears to be
along a circumferential curve at or near the edge of the mirror, and proves to be 0.14 ym rms at the

edge (r = 150 cm). While this is within the guideline budget of 0.21 um rms, distortion due to transverse
loads represent a sizeable fraction of the budget (0.62).

The elevation angle that produces the largest distortion is 20 degrees. A table showing worst case rms
distortions for the elevation angles of 20 and 40 degrees is given below.

Worst Case RMS Axial Distortion (in pm) due to Transverse Gravity Loads

Elevation Angle, deg. Circumferential Radial Entire Mirrar
20 0.17 0.09 0.08
40 0.14 0.08 0.07
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The contours on the opposing page indicate distortion in the mirror axis direction due to the combined

effect of axial and transverse components of gravity. The contours are for the median elevation angle
of 40 degrees.

It is evident that the transverse component of gravity dominates the overall distortion. Less effort

was expended towards optimizing the transverse Support system, and it is thought that substantial
improvements can be achieved without unduly complicating the transverse system.

The table below indicates the worst case rms distortions at the three elevation angles of 20, 40 and 60

degrees. It can be seen from the table that the largest rms distortions in the circumferential and
radial directions are 0.17 um and 0.10 um, respectively, both below the 0.21 ym guideline budget.

Worst Case RMS Distortion (in um) due to Gravity Loads

Elevation Angle, deg Circumferential Radial Entire Mirror
20 0.17 0.10 0.09
40 0.14 0.10 0.09
60 0.09 0.10 0.09
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Mirror support forces, as mentioned above, are applied to the mirror through a system of pneumatic
pistons, one piston for each support point. There are several advantages of the pneumatic system over
earlier mechanical linkage methods, and in recent years pneumatic-based mirror supports have been
used for a number of telescopes (Apache Point 3.5 meter, NOAO 4 meter, Herschel 4.2 meter, ete.).
For SOFIA, the primary advantages of pneumatic support are that:

. The mirror figure is relatively insensitive to
* Thermal warpage of the support frame
* Thermally induced differential displacements between the mirror and support frame

* Deformation (bending) of the support frame due to gravity load changes (elevation angle
changes)

. High precision positioning of the mirror to support frame linkage is not reqguired
. Required support force variations with elevation angle are readily controlied

An illustration of the pneumatic piston in operational (pressurized) position and collapsed
(unpressurized) position is shown on the opposing page. Piston displacement is accompanied by a
bending (rolling) of the elastomer diaphragm, and the displacement is nearly friction free. Ideally, the
force acting on the mirror would be independent of piston position so that the load applied to the
mirror would not be affected by deformations of the support frame. In reality, there is a slight
variation of force with piston position, and this dependence has been evaluated through tests conducted
at the University of Washington using commercially available diaphragms (reference 1). On the basis
of this evaluation, and on the basis of support frame deformations caused by gravity load and
temperature variations (details given in next section), mirror force variations are estimated to be no
larger than about 1/4 1b.
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Pneumatie Linkage (Contd)

An illustration of mirror figure distortion caused by a force error of 1/4 1b. at two support points is
shown on the chart. It can be seen that the error creates a "hill" on the mirror surface whose height is
about 0.04 um, well under limits of concern.

The piston also imparts an undesirable transverse force on the mirror when it is displaced in the
transverse direction. In this case, the thermally induced differential displacement between the mirror
and support frame is the dominant adverse factor, and conservative estimates of the maximum
transverse force is 6 lb. Mirror distortion caused by this force has not yet been evaluated for the
square-webbed mirror; for forces of similar magnitude, analysis conducted at the University of
Washington (reference 1) showed the distortion to be insignificant for the Apache Point hex-core
mirror.

It is important for the elastomeric diaphragm (shown on the sketch of the pneumatic piston) to
maintain a high flexibility in bending. For previous mirror support applications, the diaphragms have
been made of materials such as neoprene that are reinforced with a thin, embedded fabric. The low
operating temperatures for SOFIA may require one of the low temperature elastomers whose
applicability for these supports has not been established. It is recommended that suitable diaphragm
materials be studied for fabricability and for flexibility and endurance at operational temperatures to
insure that the required flexibility and a practical diaphragm life can be achieved.
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Primary Mirrar Suppart Frame
As described on the previous page, deformation of the support frame, or differential displacement

between the support frame and mirror, will cause an error in the force applied to the mirror by the

pneumatic piston. The support frame was designed to minimize these effects, but constraints on
weight, volume (geometric envelope) and cost were also considered.

The support frame consists of an upper and lower plate joined by a web structure, where the web is
configured as illustrated on the opposing page. The baseline support frame is constructed of graphite/
epoxy composite, although an aluminum frame of identical configuration was analyzed in the interest
of cost consideration. Various factors of the baseline and aluminum frames are listed in the table
below. While an aluminum frame would be comparatively inexpensive, it can be seen from the table

that the weight penalty with aluminum is significant, and it is possible that displacement of 0.8 mm
(column 5) may preclude an aluminum frame.

Support Frame Characteristics - Graphite/Epoxy vs. Aluminum

Max. Transverse

Max. Bending Differential
Thickness Deflection Displacement Fundamental
Axial over Eleva- of Frame with Resonance

Direction) tion Angle respect to in Bending,
Material -Mass, 1h(kg) cm (in) Range, um Mirror, mm — Hz
Graphite/ .
Epoxy 2646(1200) 44.5(117.5) 3 0.15-0.30 104
(Baseline)
Aluminum 4519(2050) 44.5(17.5) 3 0.80 -
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Dynamie Distortion and Dynamie Displacement of Primary Mirror

Vibrations of the aircraft platform are transmitted through the structure to the primary mirror causing
1) a vibratory distortion of the mirror figure, 2) an oscillation of the focal point (vibration of the axial
position of the primary mirror with respect to the secondary mirror) and 3) a vibratory tilting of the
primary. Estimates have been made of the maximum amplitudes of primary mirror translation along
the telescope axis and mirror surface distortion.

A NASTRAN analysis has predicted resonances of the telescope at various frequencies and an
amplitude magnification between the air bearing and primary mirror has been shown. Vertical
resonant vibration of the telescope structure at 25 Hz resulted in a translation of the primary mirror
0.3 nm along the axis of the telescope, where the translational limit is 5 um. Mirror surface distortion
was 5.2 nm and more than an order of magnitude less than the 0.21 ym rms primary mirror distortion
budget. The principal resonant response at 104 Hz was a 2.1 nm translation of the primary mirror with
respect to the secondary mirror due to bending of the primary mirror support frame; again, this is well
under the 5 um limit. Mirror distortion was 2.4 nm and almost two orders of magnitude below its
budget. Vibratory resonance at 311 Hz was characterized by bending of the primary mirror which
caused a 0.005 nm surface distortion and a 0.001 nm despace.

While a more detailed analysis with improved modeling is still to be performed, preliminary estimates
suggest that dynamic distortion effects are small. Transverse displacements appear to be of the same
order of magnitude as the above mentioned axial displacements, although more investigation into
mounting techniques is necessary. Wind induced dynamiec distortions have not been analyzed.
Telescope cavity air flow will contribute to primary mirror distortions, and while preliminary
estimates indicate that its effect will be small, a further examination is warranted.

Primary Mirrar Stress

Stress in the primary mirror was evaluated by considering a typical mirror web box section and
subjecting it to a shear load due to gravity in the plane of the mirror. Based upon an allowable stress
for the ULE glass of 1800 psi, stress values in the mirror web were estimated to be less than 1/4 of the
allowable under normal operating conditions. Because of this sufficiently small margin, more accurate
stress values should be established through high fidelity modeling of the mirror.

Mirror stress estimates considered only normal (i.e., tracking) operating conditions. It is assumed that
a caging mechanism will operate under gust and other abnormal acceleration conditions to prevent
failure in the mirror. Mirror survival is not expected in the event of a maximum forward crash load of
9 g's though stress should be accurately evaluated for all credible levels of airframe acceleration.
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4.3

Air Beari
Scape

The SOFIA air bearing is a spherical ball located at the C.G. of the telescope system. Its purpose is to
isolate the three rotational degrees of freedom of the telescope system from the aircraft. The air
bearing is mounted in the aft cavity bulkhead wall between the pressurized cabin and the unpressurized
cavity. As a result, the bearing is loaded radially due to the weight of the telescope system, and
axially due to the pressure difference across the cavity wall. The bearing must also provide interfaces
for the telescope centerpeice structure and for the instrument flange structure as both of these
structures are attached to the bearing rotor.
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Requirements

The major requirements for the SOFIA air bearing are summarized in the accompanying bullet chart.
The four requirements which essentially drive the design are: 1) the 9 psi pressure differential across
the bulkhead wall (and hence across the bearing) 2) the desire to have a 31.0 in. diameter hole through
the bearing for the optical path 3) the need to maximize the bending stiffness of the ball and 4)
providing the interface for the telescope structure and the instrument flange structure.

The latter three requirements are all related to each other in the sense that they all affect the choice
of the bearing outside diameter. Reacting the load imposed by the 9 psi pressure differential across
the bearing determines the width of the bearing and largely determines the air supply pressure.
Therefore, satisfying the above four requirements establishes the bearing geometry and the air supply

pressure. All other bearing parameters are calculated based upon the bearing geometry and air supply
pressure.
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Design Approach

The SOFIA air bearing is essentially a scaled up version of the KAO air bearing. It consists of a
truncated spherical ball (the rotor) which floats on an air film in a truncated spherical seat (stator).
This design is preferable over other designs (e.g., gimbal) for reasons of compactness of design,

isolation of all three rotational degrees of freedom from the aircraft, and for simplicity of control
since all three axes of rotation remain orthogonal to each other.

The spherical design provides for unlimited rotation in the elevation direction (i.e., rotation in
elevation is not limited by the bearing). The truncation of the ball limits the rotation in the L.O.S. and

azimuth directions but the rotation is adequate to satisfy the design requirements. This truncation

also establishes flat surfaces on either side of the bearing for the attachment of the telescope
structure and the instrumentation flange.

The use of air as a working fluid Is desirable because it is easy to collect and is readily obtainable.

Using a fluid such as oil would prove difficult to seal and leakage, with subsequent contamination of
the optics, would always be a possibility.
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Concept Details
The major design features of the SOFIA air bearing are shown in the accompanying figure.

The bearing is a truncated sphere providing two flat surfaces for the attachment of the telescope
structure and the instrumentation flange. The sphere allows for + and - 4 degrees of rotation in the
azimuth and LOS directions and unlimited rotation in the elevation direction. There is a 31 in.
diameter bore through the ball for the optical path.

Air is introduced into the gap through two rows of forty feed holes, one row in each half of the
bearing. The feed holes are supplied with air from a manifold built into the bearing seat. Inherent
restrictors are used to reduce the possibility of pneumatic hammer instability as well as for ease of

manufacture. The air exhausts at each end of the bearing seat as well as through an exhaust manifold
built into the center of the bearing seat.
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Caoncept Detafls (Contd)

The outside diameter of the bearing needs to be a certain minimum size for several reasons: 1) to
maximize the bending stiffness of the ball; 2) to provide a 31 in. diameter hole for the optical path;
and 3) to provide flat surfaces (for attaching the telescope structure and the instrument flange) of
sufficient size that these connections are adequately stiff in bending. Based on these requirements, a
48.0 in. diameter ball was chosen.

The 9 psi pressure load puts a 10423 1b. axial load on the bearing. The ability of the bearing to react
this load is governed by two factors: 1) air supply pressure; and 2) bearing 'wrap' angle (see the
accompanying figure). The higher the air supply pressure, the less the bearing needs to 'wrap' and, as a
result, the bearing will weigh less. An air supply pressure of 265 psi was chosen because this is one of
the highest pressures for which design data was available and it is the lowest pressure that would allow
a 31.0 in. diameter hole through the bearing yet still react the load with an acceptable operating
eccentricity ratio (see the accompanying figure).

It is interesting to note on the figure that the KAO air bearing (which also operates at 265 psi) has an
eccentricity ratio of only .12.
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Concept Netails (Contd)

Once the bearing geometry and air supply pressure have been chosen, the air gap must be calculated.
In general, the larger the air gap the higher the flow rate and the faster the flow velocity. It is
necessary to keep the flow velocity low in order to satisfy the assumptions applied to derive the design
data, which are used to design the bearing. The accompanying figure shows the maximum air gap that
may be chosen (based on the above flow constraints) for several different pressures. A lower air supply
pressure would allow a larger air gap, but the bearing would no longer be capable of reacting the axial

pressure load or, if the bearing 'wrap' angle were increased (so the bearing could react the axial load) a
bore smaller than 31.0 in. diameter would be hecessary and the bearing would get heavier.

Since all flow caleulations are based on a centered air bearing, the gap must be chosen somewhat
smaller than the maximum allowable. This gives allowance for the change in gap size when the bearing
is loaded. Therefore a gap of .000960 in. was chosen.

All other bearing parameters follow in a straightforward manner after the foregoing decisions have
been made. A summary of all of the bearing parameters can be found later in this subsection.
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Building the SOFIA air bearing will be a task comparable to buildin
since the KAO bearing was built there have been advan

has ever built a spherical air bearing the size of SOFIA.
of its kind.

€ the KAO air bearing. In the time
ces in machining technology. However, no one
In fact the KAO air bearing is still the largest

The difficulty with the SOFIA bearing is in maintainin

ances on such a large mechanical element. All the technology exists to do this, but the tooling may

not. Building the SOFIA bearing will be a time consuming and relatively expensive projeet. It is felt
that this component is a strong candidate for early prototyping.

€ such precise dimensional and geometric toler-
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Summary

The accompanying chart summarizes the SOFIA air bearing parameters. The most notable items are as
follows: 1) the large size of the bearing - 48.0 in. diameter; 2) The small air gap -.000960 in.; 3) the

weight of the subsystem - currently 17,860 lbs., and 4) the large power requirements for the
compressed air.

The SOFIA air bearing will be a difficult and relatively costly piece to manufacture. When completed,

it would be by far the largest spherical air bearing of its kind. Due to the high mass of the current
(solid) design concept, further efforts will be needed to lightweight the structure.
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Open Issnes/Major Concerns

The most pressing :oncern with the SOFIA air bearin
performed. Analysis shows that the bendin
as a structural element in the system.

g is that no detailed stress analysis has yet been
g stiffness of the bearing is sufficient for the bearing to act

However, no analysis has yet been performed which
substantiates that the bearing will maintain i

ts figure when subjected to loads. Since the air gap is so
small, the bearing can not be allowed to deform very much before the performance is degraded.

The weight of the bearing is presently estimated to be 17,860 Ibs. (7,300 1bs. for the ball and 10,560

Ibs. for the seat). Obviously this is extremely heavy. Further design work must be done to try and
reduce the weight, with a goal of _a.mea:x.

The thermal gradient across the bulkhead (and bearing) may be a potential problem for SOFIA, but a

review of the KAO air bearing thermal analysis reveals that this thermal gradient may not be a big

problem after all. Indeed, the bearing may not necessarily be made from Invar if careful thermal
planning is incorporated into the design, which may help reduce weight.
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The SOFIA vibration isolation system is required to attenuate aircraft vibrations from the telescope

structure while minimizing the total deflection of the structure. The system must also support a
weight of 30,000 1b (telescope and air bearing).

Assumptions were also made about the magnitude of vibration the isolators experience from the
aircraft during tracking. These assumptions

were based on 747SP data provided by Boeing and on data
directly recorded on the KAO.
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Egggh

In order to begin design of the vibration isolation system it was necessary to determine the estimated
accelerations transmitted to the isolation system from the aircraft. These estimates were based on
the power spectral density (PSD) plots provided by Boeing. These plots were recorded at several
locations throughout the aircraft for various flight conditions. Vibration analysis for SOFIA was based
on the Boeing PSD plot for body station 310 at an altitude of 40,000 ft. and a speed of M=0.8, this data

being the closest to the proposed isolation system location and flight conditions for SOFIA during
tracking.

Because the PSD's were random plots, a cubic spline curve fitting was performed to generate
continuous functions representative of the PSD's in the lateral and vertical directions as shown here,

The data provided by Boeing was somewhat limited. For more accurate determination of aircraft
response, additional vibration data should be taken from a 747SP. New PSD plots should be recorded
over a larger frequency range in each of the three translational directions and at a location on the
aircraft closer to the proposed location of the vibration isolation system (appr. station 700).
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accelerations [F(t)] for various damping factors and natural frequencies of the vibration isolation
system. The area ‘under the PSD curve represents the variance (square of the standard deviation) of
the probability distribution curve for the random vibration. For a single degree of freedom system, the
Mmean square response of the structure to a random excitation is the integral of the product of the PSD
and complex frequency response for the structure. The value resulting from the square root of the
integration was multiplied by a peak response factor of 3 to account for 99.7% of the random
vibrations based on a Gaussian probability distribution. This information was used to determine the
frequencies that experience the lowest levels of acceleration.

4-144



StI-+
Juaiolyjeon bBuidweq = 3
(zH) emnionlS jo Aousnbai4 |einjeN = Y
[Cy/1)32h - (1)) - 1]
} = (})H
[C1/132) - [(1/1) + 1]

1 = (JH :819um

(wopeayy jo 8a1Bap ajbuis) aimoniys
9y}l Jo} uonouny asuodsas Aouanbai) xojdwon = [(3)-H(JH]

(2H/:8) uonoung Aysuaq |enosdg 1emod = (})s
((1)4 jo Aungeqoid) iojoe4 ssuodssy yead = o0

Uole1sj200y Ueayy SWH = (1)4

(:8) uonienoxs
wopues & o} anjonns sy) jo esuodsay slenbg uesW = (1).4

:a19ym
«::Cﬁ: 0 = (1)4
P (DSLIHIMHI [ = (s

NOLLVHEIA NOANYYH OL ISNOdS3H TVYHNLONYLS
.r

IUD)) You1easaYy sowry AWVNN @. @ @




RMS Acceleration

The resulting RMS accelerations were plotted versus natural frequencies for damping factors of 1%,

2%, 5% and 10%. Using these plots optimal design frequencies were determined for the lateral and
vertical directions.

These plots show that the isolation system should have a resonant frequency below 3 Hz in the vertical
direction and 5 Hz in the lateral direction, preferably 1 Hz and 1.5 Hz in the vertical and lateral
directions respectively. However, due to other system requirements such as deflection, these low

frequencies were not feasible and the system was designed to approximately 2.5 Hz in each of the
translational directions.
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Aircraft Respanse

The desired natural frequencies for minimal transmitted acceleration previously determined were
based on standard flight conditions of the 747SP. For further analysis it was necessary to incorporate
the affects on vibration due to opening the telescope cavity on the 747SP. To determine these effects
vibrational data was collected on the Kuiper Airborne Observatory. The data was recorded to establish
a correlation between the vibration on the aircraft near the telescope before and after deploying the
fence and opening the cavity. PSD's were recorded in three locations, below the two rear isolators on
the airframe and directly on the left rear isolator. Based on these plots and for simplification of
analysis, white noise was assumed. The ratios of tracking to door closed white noise vibrations were
then determined.

The square root of the area under the Boeing 747SP PSD's were then calculated to determine the RMS
€ accelerations for the aircraft during normal flight at 40,000 ft and a speed of 0.8 Mach. These

accelerations were then multiplied by the square root of the ratio of tracking/door closed vibration for

It should be noted that the lateral and fore/aft levels of vibration were assumed equal based on data
collected from the KAO.
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Transmitted Accelerations

The transmitted accelerations (through the isolators) were calculated by the following equation

G =" [n/2DFnQ]l/?

where: D Magnitude of white noise from the input PSD's. The average level of taam noise
for the 747SP was determined by dividing the area under the PSD curve (g° RMS

accelerations) by the 20 Hz frequency range spanned by the PSD.

Dpar=  0.0013/20 = 65 ug?/Hz

Dygr = 0.0022/20 = 110 yg?/Hz

Fn = Natural frequency of the isolation system

Q = Transmissibility = [1 #2 £ D2)/2/[(1-c)2 + (2 ¢ 1)21/2

where: r = Design frequency/system natural frequency

£ = Damping factor

The results shown are for a 2.5 Hz system plotted over a frequency range of 0-100 Hz for the vertical
and horizontal planes. For a given frequency, a corresponding acceleration can be read from the plot.
This value is the estimated acceleration that will be transmitted through the isolation system to the
telescope at that frequency. .
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Proposed System

The proposed vibration isolation system will consist of four pneumatic isolators all located in a plane
paralle]l to the aft cavity bulkhead and through the mass center of the telescope system. The
pneumatic isolators are semiactive in their axial directions. A height control valve will be used to
react any input displacements by inputing/removing air to the surge tank when a displacement ocecurs.
Four isolators provide higher center of mass stability and reduce static deflection. Placing the
isolators about the center of mass permits decoupling of vibrational modes.

Pneumatic isolators were chosen because of their ability to attenuate low frequency vibration. It is
desirable to make the natural frequency as low as possible in order to move the resonant peaks to
lower frequencies and for better attenuation of high frequencies. Rubber or composite pads have
natural frequencies between 5-10 Hz which is in the region where the magnitude of vibration is the
largest; therefore, they would act as amplifiers rather than isolators. Metal springs are impractical
due to their large static deflections.

Each pneumatic isolator has an axial stiffness, k, and a radial stiffness, k/4. (The radial stiffness is
based on the shear stress in the elastomeric members.) Connected in series are the internal snubbers
which, when the system is active, minimally affect the system stiffness.

Four air springs will be connected parallel to the fore/aft axis at the same locations as the pneumatic
isolators. These springs will increase the stiffness in that direction as well as minimize deflection. In
addition, air springs attenuate approximately 95% of the vibrations above 7.5 Hz.

The total stiffness in each direction is a combination of the stiffness for the isolators, internal
snubbers and air springs.

The proposed isolation system will have two modes of operation, the "tracking" mode and the "ocked"
mode. In the first mode, the isolators will attenuate frequencies above 2.5 Hg up to a maximum
acceleration of 0.25g's. If the 0.25g limit is reached the isolators will enter the locked mode where the
internal snubbers will isolate frequencies above 7 Hz. These internal snubbers will restrict deflections
up to the maneuvering/gust limit loads. If the acceleration reaches the level of the crash limit loads,
external snubbers will prevent metal to metal contact.
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Proposed System (Contd)

The system stiffness (K) is determined from the natura] frequency (Fn) of the system:

K = (2%)2m Fn2

Where the system weight (m) is 30,000 1b. This stiffness will be provided by the isolators, air springs
and internal snubbers.

The maximum deflection (d) of the system for each mode of operation is based on the total stiffness of
the isolators and the maximum acceleration (a) in that mode as follows:

d = F/K = ma/K

During tracking the maximum travel occurs when a 0.25¢g limit load is reached. This acceleration
results in a £ 0.375 in. deflection in the vertic » lateral and fore/aft directions.

When the system is locked the pneumatic isolators act as rigid supports and deflection is governed by
the stiffnesses of the internal snubbers and air springs. In this mode the system is designed to
n..un\an_.nso.._:n limit loads. At a maximum vertical acceleration of + 3.04 €'s upward the system
will travel 0.625 in., for 1.04 g's downward the deflection will be 0.2 in. In the lateral direction a $0.63
€ acceleration results in $0.3 in. deflection. The fore/aft deflections for £0.20 g's are 10.1 in.

For crash loadings the 4.5 € upward load and the 2.0 g downward load produce 0.93 in. and 0.41 in.
deflections respectively. The ¢ 1.5 € lateral load results in + 0.31 in. deflection. And the 3.5 g fore
load and 1.5 g aft load produce 1.0 in. and 0.42 in. deflections respectively. The maximum forward
crash load is 9 g's. Beyond 3.5 g's external snubbers wil) isolate vibration and prevent metal to metal
contact. Therefore the total maximum deflection in any direction will be less than 1 in.

Aircraft limit loads are based on specifications outlined by Owen Nlinois report: ‘Specification for a

<_c..o:o=_3_n=°= &Bnoa.:. wSqueoemTe:-;g? Nov. 13, 1970. These limit loads are also
specified in SOFIA PD-2000. )
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Damped Pnenmatic Springs

The design of the isolators will incorporate relaxation damping principles. The system consists of
compressed air flowing from a surge tank into a load carrying chamber through an orifice which acts
like a capillary flow restrictor. The size of the orifice will determine the amount of system damping
as well as the stiffness and natural frequency of the system. This controls the magnitude of vibration
transmitted to the telescope.

By varying the orifice size, the system's damping factor can be controlled and an optimum damping can
be found for which resonant response is a minimum. Small variations in the orifice can result in
pronounced variations in resonant frequency. When the orifice is small, flow is highly restricted and
the system characteristics (i.e., natural frequency and stiffness) will be determined by the pressure and
volume in the load carrying chamber.

For a larger orifice the restrictions are lowered and the system is determined by the pressure and
volume of both the surge tank and the load carrying chamber.

By using a variable orifice in the design an optimum orifice size can be determined upon installation
based on actual aircraft response,

Additional control of the system stiffness and natural frequency is available by varying the air pressure
within the surge tank.
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Locking Mechanism

A possible design for the locking mechanism on SOFIA is one similar to that on the KAO. The piston
unlocks when compressed air is pushed against the bottom of the mechanism creating a normal force

sufficient to open the clamp that grips the piston. As the inner chamber fills with air, the piston rises
above the caging mechanism at which point the mechanism closes.

For sudden impacts above 0.25 g's, the piston will lock back into the caging mechanism. To release the

piston compressed air must again be supplied to the locking mechanism. This will require manual
control for resetting.

This design is feasible; however, additional possibilities should be investigated.
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Concerns/Risks

Several areas requiring further analysis and tradeoff activity still exist for the SOFIA vibration
isolation system, although basie feasibility of a candidate concept has been demonstrated. In the area
of aircraft response, 7478P PSD's should be measured at approximately station 700, with additional
fore-aft data included. The Boeing provided data is somewhat suspect, as one would expect lower
vibration levels for a 747SP than for the C141 (KAO) measured data. It is suggested that additional
vibration data be collected for the unmodified 747SP considering the added requirements; further
analysis of the cavity-open environment for SOFIA is warranted.

Due to the possibility that the telescope system center of mass may be offset from the vibration
isolation system planée, further analysis of the resulting coupled modes and additonal torques may be
needed, once telescope mass properties are settled. Additional loads not yet analyzed are those
generated by the telescope system maneuvering torquers; these should be added for consideration in
any follow-on effort.

A final tradeoff that should be performed in greater depth is the "soft system vs. stiff system"
problem, whose resolution depends on the relative levels of structure-borne vs aero-generated
loading. The aero loading on the telelscope is largely unknown at present, depends on several factors,
and is a good candidate for near-term analysis or testing.

4-160



19T~

43113939 AINOM
WILSAS J4ILS V IHIHM SAVO1 OHIV OL ISNOJSIH ONIZINININ OL 'SNO3DVINVAQY FHOW

ONI3E W3LSAS 140S ‘NOLLVHEIA 14VHOUIV O1 ISNOJS3Y ONIZINININ N33ML38 440 3avHL 'a
WN3LSAS NOLLVIOS! NOLLYHSIA HONOWHL S30HO4 NOLLOV3H 30NA0Hd SHINDHOL D

W31SAS NOILVIOS! 3HL NO ONLLOV SINOHOL TYNOILLIGaY SY T13M
SV NOILVHSEIA 40 SIGON a31dNOI NI 1INS3H GNOM 13S440 HIINID SSVN VILNILOd '8

AINO V1Va 171D NO Q3SVE 3HY ALIAVO N3O 3HL 40 S193443 (#)

ISIMUIHLO 1S399NS QNOM SOLLVH VIHV ONIM OL SSVW ‘1#10 3HL HOJ ISOHL NYHL
HIHOIH JH3M HOIHM dSZpZ JHL HOH NOLLYHEIA 40 ST3A31 G3UIN3S3Ud S.aSd HNI3oa (€)

ATNO
SNOILO3HIO TVOILHIA ANV TVHI LV IHL NI VLVA NOLLVHEIA G30IAOHd S.aSd ONI30g (2)

00L NOLLVLS AGOE 1V GIANNON 38 TIM 3dOOST 1L IHL SV3IHIHM
L4VHOHIV 3HL 4O 01€ NOLLVLS AGOS HO4 JHIM ONI308 A8 Q3AINOYHd VLVA dSLyL (1)

ISNOJS3H 14VHOHIV 'V

SHSIH/SNHIONOD

j




4.4

Pointing and Contro)] Suhsyxtem
General Pointing System Requirements

The SOFIA telescope system will be a three-axis controlled system with inertial stabilization and
tracking capability. During normal on-axis tracking, it is envisioned that tracking will only be
necessary in the elevation (ELEV) and azimuth (AZIM) axes, inasmuch as rotation around the line-of-
sight (LOS) will have little or no effect on pointing accuracy. During offset tracking, however, when
the guide target will be offset from the tracked target at the telescope focal plane, tracking in the
line-of -sight axis will be required as well. This requirement will necessitate the use of two stars of
sufficient visual magnitude, or other equivalent technique, to properly determine rotation about this
boresight axis.

The Telescope System Requirements Document (PD-2000) envisions three separate tracking cameras
and their respective optics, with switching provisions for appropriate selection of control signals from
any one of them. Minimum tracking sampling rate is specified to be 10 Hertz. The combined 3-axis
drift rate of the telescope under stabilization loop control only is limited to a maximum of 0.5
arcseconds/second.

constraints imposed by aircraft modification issues. Pointing accuracy of 0.15 arcsec is required for
stars of visual magnitude 13 and brighter. Nodding capability up to 20 arcminutes is required, with a
settling time (to 1% of nod amplitude) of 2 seconds of time or less for a 5 arcminute nod. Slewing
capability up to 24 areminutes per second in any combination of motions in the three axes of rotation
is specified.

Mapping capability using various motion patterns is required as well as capabilities for storage of up to

four different targets for nodding purposes. Dead reckoning accuracy of 15 arcminutes or better is
required along with a maximum acquisition time of 30 seconds.
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Tracking and Acquisition Requirements

Three television type cameras with their associated light gathering optics and necessary electronics
are envisioned to.be incorporated into the system. The Focal Plane Tracker is defined as that sensor
system which would be sharing the optical path of the main telescope with the science instrument
when used. The Fine Tracker and the Acquisition cameras would both be mounted as appendages to the
main telescope and be boresighted to it. Each unit is required to be able to be used as a tracker
providing attitude error correction signals to the pointing control system, including the LOS axis
rotation signal derived from the relative orientation of two stars in the field-of-view (FOV). The Focal
Plane Tracker and the Fine Tracker are both required to be capable of properly detecting stars of
visual magnitude +13 and brighter with FOVs of 8 and 30 arcminutes respectively. To aid in the
operational acquisition process, a roughly 3.5 to 1 zooming capability is called for in the case of the
Acquisition unit at a slightly relaxed requirement for detectable targets of + 11 visual magnitude for
the widest FOV.

Pointing stability/accuracy requirements using these sensor units vary from 0.15 arcsecond RMS to 15
arcseconds RMS. Current levels of analyses and assessments indicate that the 0.15 arcsecond RMS
stability requirement is somewhat ambitious, that the + 10 arcsecond accuracy figure could be
tightened, and that the 15 arcsecond RMS stability requirement will need to be studied further.

Offset tracking requirements are that the system be able to electronically offset the guide target from
the science target anywhere within the respective FOVs of the tracking units and that the Fine
Tracker be, in addition, mechanically gimballed to provide up to 38 arcminutes of offset in azimuth
and elevation. Offset pointing stability of 1.0 arcsecond is required when utilizing the Focal Plane
Tracker. Further study is necessary to determine practicable offset pointing requirements when either
of the other two camera systems (Fine Tracker and Acquisition) is used.

Much progress is currently being made in the CCD camera arena. It appears that a reassessment of

the requirements here will be made in the near future when more is known about the capabilities of the
new sensor units.
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Pointing and Stahilization:

Since the basic telescope configuration is now conceptualized as an extrapolation of the Kuiper
Airborne Observatory (KAO) telescope, there will be five levels of control working together to
ultimately achieve the absolute and relative pointing accuracies required of the telescope. At the first
level, the basic aircraft will provide the baseline attitude and heading control. Periodic updates to the
autopilot by the pointing system supervisory controller will assist in improving heading accuracy. A
telescope system vibration isolation system will be incorporated to remove a substantial amount of
aircraft translational vibrations transmitted by the structural members tied directly to the aircraft.
Translational motions by themselves will contribute very little to the error budget; however, the
vibratory effects on the telescope structural members and on the centers of mass of various large
salient parts can be significant and will be minimized by the isolation system. This system would play
the part of the second level of stabilization control. The third level will be provided by an air bearing
system similar to that installed in the KAO. This bearing, with its inherent low rotational friction
coupling between rotor and seat, will be most important in attenuating a large portion of the attitude
excursions expected of the aircraft.

The dynamic travel range requirement for the telescope (+ or - 4 degrees in elevation, azimuth and
line-of-sight) is highly dependent on the expected aircraft attitude stability provided by its autopilot
system. Establishment of data supporting a high probability that aircraft excursions could be kept
within about + or - 1 degree after the expected modifications and installation of the telescope would
assist greatly in reducing this range requirement and permit a larger aperture telescope to be
considered. However, the higher LOS range requirement may still be needed to compensate for field
rotation during observation of extended objects; this issue Is presently under review.

Inertial stabilization using rate integrating gyros for feedback will be the fourth level of control.
Video tracker feedback control loops will represent the fifth level and provide the final corrections for
lower frequency perturbations. It is assumed for this conceptual phase that no image motion
compensation using small-mirror articulation techniques will be necessary,
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Contro] System Block Diagram

The control system block diagram shows the interaction between various units within the telescope
system. Central to the system is the Supervisory Computer. This unit is considered to basically be a
system command generator and data handler. Information from the various system sensors, data
acquisition system, the control consoles and the experiment computer are stored and acted upon (as
preprogrammed) to provide the pointing system, the console monitors, the data logging system, the
aircraft, and the experiment with the proper signals at the proper times. Special functions such as
automatic periodic telescope focus compensation, automatic LOS axis drift compensation (using other

techniques not requiring the star tracker in use to determine field rotation), and star-field recognition
are envisioned to be incorporated.
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Three-Axis Painting System

The Three-Axis Pointing System diagram portrays the envisioned configuration consisting of three
orthogonal axes of baseline control. Each axis would be associated with its own spherical-segmented
torque motor as the prime mover within a rate stabilization servo loop. The digital controllers would
be PID (Proportional, Integral, Derivative) controllers. There would be three selectable target sensor
channels, as mentioned earlier, to be utilized appropriately in the various modes of operation. Using
any of the three channels, the tracker electronics system would provide either two- or three-axis
output signals depending on the availability of two or more targets in the given field of view, and
depending on whether the on-axis or offset tracking mode of operation is being used. Whereas the
joystick would provide the means for real-time operator control of the telescope attitude, the
supervisory computer would act as a higher-level-of-automation command generator for any of the
individual tracking or stabilization loops.
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Maments of Inertia

The Telescope System Mass Moment of Inertia (MOI) matrix shown on the omcouzo page indicates
several notable points: The MOIs range between 42 million and 137 million 1b-in“; the elevation axis is
associated with the lowest and the Line-of-8Sight axis with the highest MOI; and although cross axis
mass coupling in the X-Y and X-Z axes are reasonable, the coupling in the Y-Z axes combination is
very high at about 24 percent.
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Pointing System Perturhations

Seven specific perturbations to the pointing and control system are identified, with aircraft attitude
excursions, aircraft vibration and open port aerodynamic loading being the more significant
disturbances to the system. Current requirements call for aircraft excursions to be limited to 0.5
degree magnitude in roll, pitch and yaw. The actual excursions as seen by the control system will
depend significantly on the effectiveness of the air bearing in the baseline design to attenuate this
undesirable input. Preliminary studies show that we may expect about 0.1-0.2 g RMS of vibration input
from the aircraft to the base of the vibration isolation system. The magnitude and frequency content
of this disturbance reaching the telescope will clearly be dependent on the characteristics of the
isolation system. Aerodynamie loading poses the largest threat to the pointing system in that current
estimates show up to 2000 1b-ft of peak torque being imposed on the telescope system. The other four

expected perturbations are estimated to be relatively small and may be compensated for by the system
with much less difficulty.
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Tracking System Error Budget

The tracking system error budget, as depicted, uses 0.15 arcseconds RMS as the total stability error.

This assumes that focal plane trac
of operation for which this budget

king, using a sensor sharing the main optics focal plane, is the mode
applies. Note here that the bulk of the total budget is allocated to

aerodynamic loading, aircraft vibration and aircraft excursions.
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This illustration portrays a conceptual acquisition monitor display design. Its salient feature would be
a wide field-of-view with an enhanced outline display of the Fine Tracker field. The wide angle will
allow the telescope system operator to easily identify star fields and, using a "mouse," joystick or
similar input control device, efficiently orient the telescope to place the target for selected tracking
within the enhanced tracker block. Concepts for additional acquisition aids include a pre-computed
arrangement of the estimated star field displayed with the star for tracking pre-located at the
boresight cross-hairs. The actual star field would then conceivably be easily moved to overlay the
estimated star set by operator pointing of the telescope. Other informational aids inelude the time of

day, longitude, latitude, heading, telescope attitude relative to the aircraft, operation mode status,

and a graphic display at the right top corner showing the position of the telescope relative to its travel
envelope.

4-178



6L1-V

3an1IL1v 3d02S3131
a. 20+ =501 eir=13 cl=2v
2
O
v
5 a1314 YvIS
WNLOV
N_ 40 Avidsia ¥
] O
7 *
SHOLVOIANI 7,
SN1V1S
Y
dy .
04
1 / @134 V1S
g a31vmiLsa 40
1 AV1dSIa TWNOILdO O
d O«
X
AO HINOVHL 40
AV1dSIQ Q3ONVHNI

3d00S3731 40 NOILVDOT

@ (74} 1'0¥:0€ coe:ovi Lo:8i:¢t
JONVH DNILNIO NIHLIM \ \ / /

ONIQVIH  3aNLILV1 3ANLIDNOT JML

AV1dSIA VHINVYD NOLLISINDIY

JIJUI]) YIaeasay souly

VIdIOS



Telescope Tracker Display

As similarly described for the Acquisition Camera Display, this chart illustrates some concepts which
may be incorporated into the video monitoring systems to improve in-flight operation of the airborne
telescope. Some of the elements displayed on the acquisition monitor are duplicated here on the
tracker monitor, i.e., those informational text and graphical status indicators laid out around the
periphery of the monitor and the operator-selectable display of the estimated star field. The primary
differences shown for the tracker unit are (1), the FOV represented by the screen would be consider-
ably smaller than that of the acquisition monitor and (2) a "mouse" (or equivalent device) driven
adjustable search window would be available for operator manipulation and capture of the intended
target. Upon capture of the target during operation, the operator would initiate the track mode of
operation, which would cause the system controls to automatically move and loek the target at the
boresight position on the monitor or at any other selected offset point within the tracker FOV.
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Transfer Function Block Diagram

The transfer function block diagram illustrated here represents a typical single axis of the three-axis
telescope pointing control system. This diagram depicts the tracking system as an outer control loop
with a 1 Hz tracker time constant, a 10 Hz sampling rate and a generalized dipole compensation. The
forward path basically represents the inner gyro stabilized loop, closed in rate and described by a
transfer function of third order over a fifth order polynomial. In the conceptual design, working within
the range of physically realizable quantities, the five independent coefficients of the forward path
transfer function, the transfer function gains, plus the pole and zero locations of the tracker loop
compensation dipole were systematically selected to provide acceptable simulated responses.

4-.182



€81-¢

NOILONNS H34SNVHL dOOT-03S0T0 O

S 4 € ¢ l
+ +
S pP+g u+~w P+ SP+ SRS
6 3 [0 ‘m
mu+weu+~mnu+%uo

_ HINdNVS
zZH 01 829+S ( .?9?
J
o —» > >
+ - ._—.x 0zZ+9)%

SOINVNAQ HINOVHL NOILVSNIdWOD UIMOVHL

W3LSAS TIVHIAO 40 NOILVINISIHJIH NOILONNA HIISNVHL

J9JUI)) YoaBISIY Sowy

VIdQS



Frequency Response Magnitude and Phass

The facing two plots show the frequency responses of the system rate loop as conceptually designed, in
magnitude and phase, respectively. Note that a system bandwidth of something more than 10 Hz is
necessary and appears achievable.

4-184



S81-¢

(238 /sueiprs) Lruanbay) {s09/suwpes) Lausnbasj
01 1 29t )0! o - 0t 01 201 +0t o1 oo-
fap I ] ™ T |
- T ! m on- q ou-
\ : m ori- N\ = W o9~
aw 1= 3 1S 1™ ¢
m oo1- m AN u or- 2
w3 : i
- 1o ¢
¢ [ | 2 f/ m ol-
1 // oz- X °
- (1] ot
AON3IND3Y4 SNSHIA 3SVHd Q) ADNINOD3HA SNSHIANIVD ()

(zH v8'eL = yipmpueg) 13AON SNONNILNOD ‘dOO1 DIY 40 ISNOdS3IH AONINDIHA

JIJUI]) YIIeasay sawy ﬁ%%@%



Tracking System Step Response

The pointing control system with its tracker loop
previous transfer function block diagram) was sim

closed around a tuned rate loop (as depicted by the
ulated after the proper choices of gains, coefficients

and compensation pole-zero locations were made. The rise times obtained for 5 arcminute telescope
nods easily met the required 2 seconds or less, as shown.
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Torque Matars Concept

With the baseline telescope system design utilizing a monoball air bearing for primary support,
following the Kuiper Airborne Observatory (KAO) basic concept, the system prime movers tend
naturally to be outgrowths of torque motors used in the current airborne observatory. Envisioned are
extensions in design of the segmented spherical permanent magnet torquers. Preliminary estimates of
serodynamic torques felt by the telescope indicate the need for torque motors with RMS ratings of
about 650 Ib-ft and peak ratings of roughly three times that, or 1950 Ib-ft. Motor manufacturers have
been contacted and queried about the feasibility of motors of this size and configuration. Two of them
responded with a fair amount of confidence that they could build segmented spherical motors, which
were basic extensions of the ones being used by the KAO telescope, with peak torque ratings in the
range of 2000 1b-ft and operating at radii of 3 to 4 feet. A possible alternative to the requirement for
these large torques, of course, is to design the system using multiple smaller motors per axis.
Although obviously complicating the mechanical design if the multiple motors per axis approach is
taken, a side benefit would be that the large static attraction forces inherently associated with these
permanent magnet motors (roughly 2500 pounds of force for the 650 1b-ft RMS units) would be reduced,
thereby minimizing both the need for large special jigs and difficult maintenance procedures.
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Tracker & Acquisition System Cameras

Results of conceptual studies show that cameras for the three Tracking and Acquisition (T&A) systems
could be simple extensions of those in use on the KAO. New ISIT cameras with proper front-end optics
would be the design choice at this point in time. Systems using CCD arrays are, however, beginning to
show very promising signs. Usable error signals for pointing corrections have been obtained from CCD
units working on very dim targets. Array uniformity, chip availability and long required integration
times for faint objects, however, are some of the areas of concern being closely followed for
developing improvements. Currently available on the market are relatively precise and fast video
tracking electronic "black boxes". Significant efforts will be made to incorporate these off-the-shelf

units or their future extensions to ease the perpetual need for increasing numbers of technical
specialists and stringent documentation controls for one-of-a-kind systems.
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Stabilization 1.anp Gyras

Several candidate gyroscopes were investigated for their applicability to the inertially referenced
stabilization control loops on the SOFIA telescope system. Of these, five are listed in the chart and
compared to the Honeywell GG334A, which is the model originally selected for the KAO system and
now being phased out of that observatory because Honeywell stopped producing this gyro several years
ago. Inasmuch as drift characteristics of the inertial reference sensors to be used in the stabilization
loops significantly affect the attainable pointing accuracy and stability, of particular interest on the
chart are the relative values of AIDR (Acceleration Independent Drift Rate), ASDR (Acceleration
Sensitive Drift Rate), and Random Drift. Note that the old Honeywell GG334A gyros were associated
with relatively good numbers in the latter two categories. Although its AIDR (bias drift) can be
matched or bettered by any of the other five, only the Teledyne SDG-5 has equal or better
specifications for ASDR and Random Drift. The Northrup GIG6G comes reasonably close to the
Honeywell GG334A in these two categories. Both the Teledyne SDG-5 and the Northrop GIG6G gyros
are considered acceptable choices for inertial stabilization control of the SOFIA telescope.
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EEBEEBEEBE

The accompanying tabulation is generated primarily to list, for informational purposes, most of the
various subsystems envisioned for the total telescope electrical and control system. The requirements
for operator manipulation and monitoring of parameters within these subsystems from a main or

auxiliary operator's console is indicated to imply the need for front panel space for each of these
elements of the system.
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Concerns/Rigks

It has been shown in the telescope structural design section (4.2) of this Phase A Final Report that the
lowest bending mode frequency is about 27 Hz. This analytically determined value is not sufficiently
high to meet a rule of thumb which stipulates that the lowest structural mode be at least two octaves
above the system bandwidth for a well-behaved typical system. This statement is based on the
assumption that a bandwidth of at least 10 Hz will be required of the stabilization loop to properly
attenuate the transmitted aircraft vibrations and aerodynamic perturbations. Applying the rule of
thumb to the 27 Hz mode, on the other hand, a stabilization system bandwidth of about 7 Hz with well-
behaved singularities should be fairly easily attainable; a bandwidth of 10 Hz or greater may be
achievable but at the risk of having to accept higher levels of resonant jitter which would compromise
the improvement sought by the increase in bandwidth.

Aerodynamic loading, aircraft vibration, and air bearing friction (which includes aireraft quiescent
angular excursions) are those outside disturbances to the pointing control system which can greatly
influence its final performance. Accurate characterizations of these gquantities are not currently
available and hence assessments of performance capabilities are tenuous until appropriate tests and
measurements can be made. Sizing of the required prime actuators is obviously impacted by the
uncertainties of the disturbances; fundamental configuration decisions are also affected by as yet
unclear answers to questions such as: whether or not the sizes required are physically and economically
practicable; whether or not multiple smaller sized actuator-power amplifier sets need to be the
baseline; whether or not other power media should be used (pneumatics, hydraulics), ete. Clearly,
boundary conditions for all of the expected disturbances should be ascertained in a timely manner to
remove the prevailing uncertainties.

Although it was stated earlier that no active design consideration was given to the use of Image Motion
Compensation (IMC) for this Phase A effort, availability in future integration and test phases of a
relatively fast and accurate secondary mirror assembly would provide a level of insurance for any
shortcoming of the telescope articulating system found at that time. Early scrutiny of the secondary
mirror assembly design will thus be necessary to ensure that this back-up philosophy can be imple-
mented to mitigate the concerns relative to the disturbance uncertainties alluded to above. Another
IMC option for consideration, if use of the secondary mirror proves infeasible, is an articulating
tertiary mirror; this would of course only stabilize the image to the Nasmyth focus.
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4.5

Data Management, Acquisition, and Communieations

Scope

This section provides a conceptual design for the Data Management, Acquisition and Communication
(DMAC) System that is a part of the proposed SOFIA Telescope System. This system includes the
hardware and software needed to: acquire the various subsystems' sensor data; process, route and store
this data; and provide, for some subsystems, automatic prompts for "go/no-go" commands or corrective
command signals for vernier supervisory regulation. The system design is to incorporate major
functional blocks of the KAO, including planned upgrades, and incorporating advances in modern com-
munjcations network technology. As the SOFIA DMAC system is not subject to questions of
feasibility, this study is intended only to outline system considerations, develop a conceptual
architecture for an efficient, reliable and expandable system, and provide sufficient subelement detail
to enable rough costs to be calculated.

4-198



661-¥

44V1S VI40S ANV '44V1S SNOILVHIJO OV ‘SHOLOVHINOD 1HOddNS OV
‘NOH4 SINIW3HIND3Y INdNI -
ADOTONHIIL NH3IGOWSIAVHOIN OVM GINNVId ILVHOJHOONI -
T3AON W31SAS SYOWI 3SN -
S3INIMIAIND NOIS3Aa

SISATYNV 1S00 HO4 S1NdNI 3QIAOHd  *
FHNLIIFLHOYY WILSAS TVNLJIONOD dOTIA3A -
SININIHINOIH WILSAS ININHILIQ -

3d00S

S3ANITIAIND ANV 3d0IS

19U Yo1eIsIY sowmry
VIdQS



Major Requirements

The design concept for the SOFIA Data Management, Acquisition, and Communications System is
based on the KAO system, including planned upgrades. Major requirements for the system include high
reliability, using proven components and selected redundancy to minimize inflight failures. High noise
immunity, including consideration of electromagnetic compatibility and interference minimization, is
also needed. Provision for ease of modification by use of standardized hardware and communications
protocols is required, to keep the facility up to date and allow for expansion of capability as needed.
The communications requirements include direct subsystem-to-subsystem data transfer via a standard
local area network, with a "Network Manager" and Test Work Station for network configuring and
system diagnostics. A hardwire (on-ground) link to a ground-based system simulator is desirable to
increase efficiency in configuring the system for the user.
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Design Cancept

The design approach divides the SOFIA System into major subsystems such as the Oscillating Secondary
Mirror, Data CPU, ete. and interconnects these subsystems through a local area network (LAN). Each
of the major subsystems consists of from one to seven elements: LAN interface, processor, control
panel, control interface, motors/transducers/etc., firmware/software, and/or mass storage. The
DMAC provides the LAN interface for all of the major subsystems and only in the case of the House-
keeping and Data Acquisition Subsystem, Data CPU Subsystem and its backup, Video Signal Processor
Subsystem, Mission Manager's Workstation, Network Manager and Test Workstation, and Remote P. L
Workstation, does the DMAC provide for all of the elements insofar as they are envisioned to exist.

Note that the DMAC does not necessarily provide for the functioning of all of the subsystems but only
as indicated by the shaded and non-shaded descriptors on the diagram.

Subsystems

The following is a brief description of each of the subsystems:

1. - This subsystem provides focusing, position angle of
chop, offset, amplitude and frequency control to the telescope secondary mirror.

2. EEEEEEB - This subsystem moves the focal plane camera to enhance the

telescope system performance. It uses various parameters, one of which is offset, to position the
focal plane camera. It is used in conjunction with the Star Tracker subsystem.

3.  Star Tracker Suhsystem - This subsystem controls the absolute pointing of the telescope by using
the video image from the tracker, acquisition or focal plane telescope and sends corrective

azimuth and elevation voltages to the torquer motors.

4, gg - This subsystem monitors the position of the telescope and

provides pointing inputs to the positioning system for the location of stars relative to the air-
craft. It uses azimuth, elevation, line of sight, and inertial navigation system data such as

aircraft position, speed, heading, wind speed and angle, and global positioning data to position the
telescope. .

5. EEEEIEE - 8ubsystem provides telescope isolation from low
f

requency translational and rotational vibration.

6. EFEE.F«EFB - Subsystem provides control for boundary layer fence,

aperture door, stator ring, shield, elevation fine balance and azimuth/line-of-sight fine balance.

7. P.L Suhsystem - This subsystem includes the investigator's equipment and also a standard support
processor. 4-202
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Dexign Concept (contd)

10.

11.

12.

H“.

14.

15.

Ha.

HQ.

H“.

- This subsystem collects and records housekeeping
data and performs utility functions. .

Data CPIl Suhsystem - This subsystem collects and records data from the primary experiment. It
processes experimental data and supports the principal investigator in the experiment.

Backup Data CPII Subsystem - This subsystem provides a full backup to the primary experiment

Data CPU Subsystem in the event of a Data CPU failure and hence precludes delay or
postponement of the experiment.

KEEEEE ~ This subsystem provides real time video enhancement.
Mission Manager's Warkstation - This subsystem provides the Mission Manager with access to log

generation software, flight planning and facility monitor and control.

EEEN»EEEB - This subsystem provides control, administration,

maintenance and testing of the network and each station of the LAN network.

Remote P. 1. Workstation - This subsystem provides the investigator team with a remote

workstation to do offline editing, analysis, etec.

Cavity Pre-Coal Suhsystem - This subsystem provides pre-cooling to the telescope to reduce the

initial temperature differential between the telescope and the observing altitude.

EE»EEE - This subsystem provides a standard and flexible network

between subsystems via a single coax cable at 10 megabits per second using standard MAP, Manu-
facturing Automation Protocol. This protocol is ideal for real time applications and uses the
"token bus" approach. The MAP LAN architecture is a hierarchical structure that consists of a
broadband backbone network linking subnets. The subnets provide low-cost networks to localized
groups of controllers that are dedicated to specific testing. The broadband backbone uses broad-
band CATV-like technology, which allows for longer distances between stations and multiple
signaling channels.

Video Distribution Subsystem - This subsystem provides for the distribution and display of

telescope and aircraft data.

- This subsystem is a collection of peripheral equipment. It
includes the printer, printer/plotter and WWYV receiver.
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Design Concept (contd)

19. Ground Base System Link - This link allows for communication between the ground base system
and the aircraft while on the ground, for example, Ethernet, RS422 or RS485.

20. Ground Base System - This system provides general ground base support for SOFIA, i.e. to
develop new software, reduce data from past flights and develop flight plans.

This chart outlines the major elements of each of the subsystems. A bulletted item indicates the

element is a part of the design and cost responsibility of the DMAC system. An open circle indicates
that the element is outside the area of this system.
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SOFIA

Ames Research Center

GROUND BASE SYSTEM

* AIRCRAFT SYSTEM LINK

* CENTRAL COMPUTER

* MASS STORAGES (HARD DISKS AND TAPE DRIVES)
* TERMINALS

* OPERATING SYSTEM SOFTWARE

* SIMULATOR

* PERSONAL COMPUTERS (IBM OR EQUIVALENT)

* PRINTERS

* PLOTTERS

* LOCAL AREA NETWORK
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% @ NN. NN A&w Ames Research Center
e ——————————————————————— e

SUMMARY

STANDARDIZATION AND USE OF OFF-THE-SHELF HARDWARE AND SOFTWARE
TO REDUCE SYSTEM IMPLEMENTATION, MAINTENANCE, AND COST

NDUSTRY STANDARD NETWORK (LAN) TO SMPLIFY SYSTEM COMMUNICATION,
MODIFICATION, PROTOCOLS, AND EXPERIMENTER INTERFACE

*  BACKUP DATA CPU IS PROVIDED FOR SWITCH OVER, WITH MINIMAL DOWN TIME,
TO THE DATA CPU IN THE EVENT OF A FAILURE OF THE DATA CPU

NETWORK MANAGER AND TEST STATION TO PROVIDE NETWORK MANAGEMENT

AS WELL AS OFF-LINE AND ON-LINE SYSTEM MONITORING TO MINIMIZE SYSTEM
DOWN TIME
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4.6

Telescope and Cavity Thermal Model

A thermal model representing the SOFIA telescope and cavity has been developed and analyzed using
computer programs TRASYS (Thermal Radiation Analysis System) and SINDA (Systems Improved
Numerical Differencing Analyzer). TRASYS was used to generate radiation couplings among all
participating surfaces. These couplings, together with other inputs (conduction, convection, and
thermal capacitances), are then entered into SINDA to produce steady state and transient temperature
distributions. TRASYS was also employed to generate sketches for the model. The thermal model is
based on Ames' conceptual structural design, records from the Kuiper Airborne Observatory (KAO),
preliminary Computational Fluid Dynamics data provided by the Boeing Co., and other assumed
parameters and construction details. The results of the thermal analyses can be used to estimate
optical degradation due to air density variation and structural deformation due to uneven thermal
expansion.

The Cavity

The cavity is assumed to be in the shape of a truncated rectangular pyramid. The top of the cavity is
open to the sky but is partially covered with the shear layer control "ramp" at the cavity aft
bulkhead. All interior surfaces are coated with black paint. The walls have 6" urethane foam
insulation between the structural beams and 2" additional flat insulation over the beams.

Due to aerodynamic heating, the air inside the cavity reaches the "recovery” temperature. At an
altitude of 40,000 ft and Mach no. of 0.8, the computed recovery temperature is -25 deg. F (free
stream air temperature is -70 deg. F).

The telescope and the cavity walls exchange energy with the night sky by radiation. The effective

radiation temperature for the atmosphere at 40,000 ft. altitude has been estimated to be -221 deg. F
based on reported data on the emissivity of air.
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Metering Tubes: The upper and lower metering tubes are both fabricated from graphite
epoxy/aluminum sandwich material, The face sheets are 1/16" graphite epoxy, and the core
material is aluminum honeycomb with a density of 7.9 Ib/cu. ft. The overall thickness is 1",
Dimensions for the upper tube are 122" dia. x 40" H and for the lower tube are 122" dia. x 42" H.

Center Piece: The center plece is constructured from 1/2" thick aluminum plates. It is of
rectangular shape on the air bearing side and cylindrical shape on the opposite side. The overall
dimension is 156" x 156" x 40",

Primary Mirror and Mirror Mount: The primary mirror used in the model is made of Corning's
ULE material with 3" x 3" cells, 0.4" top plate, and 0.5" bottom plate. The average thickness of
the mirror is 12". The mirror mount has overal] dimension of 122" dia. x 14.5" H and is made
from 1/2" thiek graphite epoxy plates.

Secondary, Tertiary mirrors and supports: Secondary and tertiary mirrors are glass mirrors and
their supports are made from graphite epoxy.

Air Bearing: Material for air bearing and the connecting tube is Invar. Dimensions for the air -
bearing are 48" dia. x 24" wide and for the connecting tube are 36" dia. x 12" long.

z»-aﬁ:nsoagzﬂ.«. modelled Nasmyth chamber is 72" dia. x 72" long and covered with 1"
urethane foam insulation. :

Tracker Camera, Acquisition Camera, and Gyroscope: The cameras are 10" dia. x 36" long and
are located on the outside of the upper metering tube. The gyroscope system is a 24" x 16" x 10"
box and located at the bottom of the primary mirror mount. The cameras and gyroscope system
are covered with 1/2" thick foam insulatio, .
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If the surface temperature of a solid is different from that of the surrounding air, a convection current
is generated which causes a density gradient to exist in the region near the surface. The index of
refraction of air is a function of its density as expressed in the Gladstone-Dale Equation:

n = index of refraction = 1 + Bo/o, (1)
Where 8 = a constant = 0.000292 for air

¢ = density of air

pg = density of air at standard condition = 0.0807 Ib/cu. ft

Consider a simplified mode] of the convection current as sketched below:

Y, o, N ———— convective current

mirror surface

From Snell's law, nysine, = nysine, (2)
At SOFIA's flight condition Ty = 435 deg. R, and

Py = 0.016881 Ib/cu.rt
Assuming a temperature difference of 10 deg. K (18 deg. R), then

Ty = 453 deg. R, and

pq = 0.01621 Ib/cu.ft
Substituting these guantities into eq. (1), we obtain

N, = 1.000061081 and ny = 1.000058653

Assume 81 = 45 deg. (a typical condition)
Then by eq. (2), 82 = 45.00014114 deg.
The "seeing” angle equals twice the refracted angle, or 1.016 arcsec. Similar calculations show that
the seeing angle is 0.52 arcsec for a § deg. K temperature difference.
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Convective Heat Transfer Coefficients

Utilizing Boeing's preliminary Computational Fluid Dynamies (CFD) results, the flow velocities within
the cavity have been estimated as follows:

a.  secondary mirror and supporting struts V = 50 ft/sec
b.  upper 1/3 of cavity V = 30 ft/sec
c.  middle 1/3 of cavity V = 20 ft/sec
d. bottom 1/3 of cavity V = 10 ft/sec

Convective heat transfer coefficients (H) are calculated using the following formulas for boundary
layer flow over flat plates:

H=0.664 x wo:u x w..—\u x K/L for laminar flow
H = 0.037 x Re'® x Pr6 x Kk/L for turbulent flow
where Re = Reynolds no. = Rhox Vx L / Mu
Rho = density = 0.0169 1b/cu.ft
Mu = viscosity = 0.0344 1b/ft/hr
Pr = Prandt] no. = 0.73
K = conductivity = 0.0113 btu/hr/ft/°F
L = length of the plate in the direction of flow, ft
Location L.(f1) Re Flow Type H _(btu/hr/°F/sq.f1)
a 1 88500 laminar 2.00
b 5 265000 turbulent 4 1.51
c 10 354000 turbulent 0.95
d 15 265000 turbulent 0.50

Note: Usually when Reynolds no. is less than 300000, the flow is considered to be laminar. In the

cavity of an aircraft, however, due to the existence of substantial pressure fluctuations,
the flow is more likely to be turbulent.

In the area between the primary mirror and its support, natural convection is assumed, and
the H value is estimated to be 0.169.
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Steady State Results

The steady state solution applies to the case when the telescope and cavity are pre-cooled to near the
operating temperature and the aircraft flies at the operating altitude with constant ambient conditions
for a period of 2-3 hours. The assumed ambient conditions are:

Altitude = 40000 ft

Mach No = 0.8

Free stream air static temperature = -70°F
Recovery temperature (in the cavity) = -25°F

The calculated steady state temperatures are as follows (in deg. F):

Primary mirror, top -25.6
Primary mirror, bottom -23.4 to -25.1
Primary mirror mount, top -21.9 to -25.2
Primary mirror mount, bottom -15.0 to -24.9
Lower metering tube -25.4 to -26.6
Center piece, interior -27.5 to -30.2
Center piece, exterior ~22.4 to -30.7
Upper metering tube -25.7 to -29.6
Secondary mirror struts (spider) -31.3 to -31.5
Secondary mirror assembly -18.1 to -22.9
Air bearing +28.7

Air bearing connecting tube -8.4

Nasmyth chamber +54.6
Tertiary mirror & supports -29.3 to -29.8
Tracker camera +57.4
Acquisition camera +57.4
Gyroscope System +79.2 .
Cavity walls -15.9 to -31.5

The chart shows steady state temperatures for all the nodes.
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Transient Analyses

The transient response of the telescope and cavity to a change of ambient condition has been analyzed
for two cases. In the first case, it is assumed that the cavity air temperature increases from -25°F to
-5°F in 20 minutes, and then stays at -5°F for the remaining time of the flight. In the second case, the
cavity air temperature increases from -25°F to -5°F in 20 minutes, holds steady at -5°F for 20
minutes, drops to -25°F in 20 minutes, then stays constant at -25°F for the remainder of the flight.

The graphs on the next two pages show temperature response for the major components of the
telescope. The time constants have been estimated from the case 1 results as follows:

Primary mirror 1.6 hr
Center piece 1.2 hr
Upper metering tube 0.2 hr
Bottom metering tube 0.4 hr
Air bearing >10 hr
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Steady state analysis

>.

1.

N.

3.

Radiation Is a significant mode of heat transfer and it causes temperature variation of
approximately 6°F between the top and the bottom of the telescope.

Top surface of the primary mirror has a uniform temperature of -25.6°F. Since this is
very close to the recovery temperature (-25°F), little optical "seeing" is expected.

Secondary mirror assembly is 2.1 to 6.9 degrees above the recovery temperature and this
can cause a seeing effect of 0.4 arcsec. The present analysis assumes a 50 W heat
dissipation for the chopper. If the true power input is higher, special heat rejection
design will be required.

Alr bearing operates at +28.7°F, but it is not likely to cause optical seeing since the light
path (to Nasmyth instruments) is paralle] to the direction of the density gradient. Air
bearing does not cause excessive heating of the telescope since the connecting tube is
made of Invar which has a low thermal conductivity.

Heat sources (tracker camera, acquisition camera, gyroscope) cause temperature
variations up to 15.6°F in the telescope structure. If desired, these gradients can be
reduced with better thermal isolators.

Transient analysis

H.

The transient results show that if the cavity temperature experiences a 20°F
temperature change, the top surface of the primary mirror will reach a 10°F approach to
the cavity temperature (with an optical seeing effect of 0.6 arcsec) in about 1.2 hour.

For a "ramp" input with temperature change of 20°F and duration of 20 minutes,

maximum temperature change for the primary mirror is 5.5°F with a seeing effect of 0.3
arcsec,
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Primary Mirror Coaldown

Before each mission, it is Necessary to cool down the telescope and the cavity to near the operating
temperature. The primary mirror has relatively high thermal mass and long cooldown time as
compared to other components in the system. A thermal model was created to analyze the transient
behavior of the primary mirror during cooldown. The model is based on the Corning's ULE design
which consists of a 0.4" curved top plate, 0.5" flat bottom plate, and cells of 3"x3" cross section and
varying depth between the plates. The celis are separated by 0.075" walls which are called "struts",
and strengthened at each corner with 0.15"x0.15" posts. The overall thickness of the mirror varies
between 8" at the center and 15.8" at the outer edge. Thermal properties for the ULE material are as
follows:

Density 137.9 1b/cu.ft
Conductivity 0.75 btu/hr/ft/°F
Specific heat 0.183 btu/1b/°F

For the present analysis, it is assumed that there are no temperature gradients in the radial and
cireumferential directions and as a result, a simple model consisting of only one cell was employed (see
chart). The mirror is initially at 70 deg. F and, after time=0, it is exposed to gaseous nitrogen at a
temperature of -30 deg. F. Conduction, convection, and radiation modes of heat transfer are all
present. Radiation couplings among the nodes in the interior of the cell are calculated by the program
SSPTA (Simplified Shuttle Payload Thermal Analyzer), and temperature distributions are computed by
SINDA (Systems Improved Numerical Differencing Analyzer).

The following methods of cooldown have been studied:
1. Natural convection only.

2. Blowing at top and bottom surfaces.
3. Blowing in the cell.
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Heat Transfer Coefficients for Natural Convection

H=Cx(GrxPr) MxKk/L

where: H = Heat transfer aomn@n_o:n. _wn_.\_._rom-:-z
Gr = Grashof No. = g x L® x Rho? x (Tw -To) / (Ta x Mu?)
€ = Acceleration of gravity = 4.17E8 ft/hr-hr
L = Length of the plate, ft
Rho = Density, Ib/cu.ft
Tw = Wall temperature, °F
To = Fluid temperature, °F
Ta = Average temperature = (Tw +To)/2
Mu = Viscosity, Ib/hr-ft
Pr = Prandt] No. = Cp x Mu/K

Cp = Specific heat = 0.25 btu/lb-°F for nitrogen
K Thermal Conductivity, btu/hr-ft-°F

The values of Rho, Mu, and K are properties of the fluid film and are evaluated at the average
temperature Ta. L equals 4.9 ft for the top and bottom surfaces and 0.244 ft for surfaces inside the
cell. The values of C and M depend on the magnitude of Gr x Pr as well as the inclination of the plate,

and are expressed as follows:

1. The end plates of the mirror are considered as vertical plates:
C=059, M=1/4 if Gr x Pr < 10E9
C=0.13, M=1/3 if Gr x Pr > 10E9

2. For the struts, use average values for vertical and horizontal plates:
C=0.50, M =1/4 if Gr x Pr < 10E8
C=0.12,M=1/3 if Gr x Pr > 10E8

The above quantities and equations are programmed into SINDA's input and the heat transfer

coefficients are evaluated before each iteration.
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A. Surface blowing

H=0.332 x Rel/2 x pr 13 ; g/1, if Re < 300000
H = 0.0295 x Re'8 x pr'6 x g/L if Re > 300000
where

Re = Reynolds no. = Rho x V x L/Mu
V = Velocity, ft/sec
H,Pr,K,L,Rho,Mu are as defined in the natural convection section.

B. Blowing in the cell

For all flow rates considered, the flow in the cell is laminar (Re < 2000), and the following
formula is applicable (effect of the tube entrance has been neglected):

H = 3.66 x K/L

It is noted that the H value due to forced convection is rather small (< 0.2) and therefore
natural convection cannot be ignored. Total heat transfer coefficient is the sum of the two
coefficients.

Results of Computation

The results of computation are presented as graphs of temperature versus time and time constants.
Time constant is defined as the time required to reduce the temperature difference between the solid
surface and the fluid to 36.8% of its initial value. Graphs of temperature curves are included for three
cases: 1) Natural convection only, 2) Surface blowing at 20 ft/sec., 3) cell blowing at two mirror
masses per hour. Time constants have been calculated and tabulated for the above cases and a number
of other flow conditions.
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4.

Corning's "ULE" appears to be a desirable material for the primary mirror due to its low
thermal mass and coefficient of expansion.

The "no Eo!.:n.. case resulted in fairly high time constant (2.3 hours) and is therefore
considered 5.2_358.

Surface blowing at 20 ft/sec reduces the time constant to 1.1 hour and represents an optimum
design. Total flow rate requirement for this case has been estimated to be 4000 cu.ft/min.

Cell blowing provides faster cooldown with lower flow rates, however, it is not recommended
due to the complexity of mechanical design and fabrication (over 1000 tubes are required).
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4.7

Instrument Accommodations

Experimenter Interface: Requirements

Data collection by the experimenter is paramount, requiring only target acquisition and a chopper
reference signal. Though additional computational facilities are available from SOFIA, the observer

should be able to conduct his investigation with no more than the minimum support. This mode of
operation reduces dependence on the SOFIA system and insures a successful mission.

Archiving of the experimenter's data is provided by a system that accepts either analog or digital data
from the experimenter's equipment and records this data along with selected housekeeping data. The
archiving system consists of a signal processor and a high speed optical recording system. The
experimenter, through his instrument, controls what data is recorded. The design of the system is such
that it may function independently and as a stand-alone facility.

Compatibility of the experimenter's system with SOFIA is achieved by using standard serial
communications protocol, for example, Ethernet or RS422. Where high speed digital data is to be
transferred, a Centronics type interface (8 bit parallel plus strobe) is a leading candidate.

SOFIA system emulation is supported by a series of programs written in "C" that allows the
experimenter to use his VMS or Unix system at his facility for system test and verification. Software
is also supplied to the experimenter for starfield selection and flight planning.

Observing time is maximized by incorporating computer aided starfield recognition. This is a
requirement incorporated within the SOFIA control and data system.

Ease of use is achieved by the use of mouse driven graphics displays of telescope control parameters

and responses. The control paths are designed to give the experimenter a high level of command
control over the telescope.
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Experimenter Interface: Experimenter's Computational Facility

Two computational requirements exist for SOFIA. The facility requires fixed functions of data
acquisition, telescope status monitoring, starfield acquisition, telescope control and display. The

observer requires functions specific to his experiment as well as a number of fixed functions relating
to telescope performance and control,

A separate experimenter's computer meets this need by having a fixed interface to the telescope

facility while providing flexible interfaces and easily installed computational functions as required by
each observer.

The experimenter's computer, for program compatibility, should support the VAX/VMS operating
system. For on-line processing it will include floating point processing. Macintosh type computers,
using Ethernet or RS 422 protocols will be used for control and display of the experimenter's

computer. The terminals, having resident display options, provide a graphical interface for the
observer to the telescope system for control and display of data.

In addition to the experimenter's computer, a data archiving facility capable of accepting raw data
from the experiments along with selected telescope system parameters is envisioned. This archiving
facility will provide the experimenter with a record of all data taken during a flight.

The observer also has the option of making observations without the use of the experimenter's
computer by using the alternate station for experiment control.

4-236
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Experimenter Interface: Display Techniques

Ideally, the experimenter should be able to control as much of the telescope operation as he wishes.
Graphical displays of telescope operation convey the greatest amount of information while allowing a
nearly intuitive means for telescope control. This has the advantage of reducing the time the observer

requires to learn the operation of the telescope and minimizes the chance for error during an obser-
vation.

Heavy emphasis on graphical displays and object oriented programming will insure the greatest
compatibility possible between ground based observatories and SOFIA.

Object oriented programming is a departure from past practices but has the advantage of being easy to

understand and lends itself to low cost modification of the information presented or the operational
routines used during observation.
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Introduetion

Background

In 1986, NASA/Ames Research Center (ARC) initiated studies into the feasibility, preliminary
concepts, and costs for development of a three-meter class airborne infrared observatory, which is
intended to improve astronomy data gathering capability beyond that currently available with the 0.91
meter telescope in the KAO. An early in-house assessment of existing airborne platforms established
that only certain models of the Boeing 747 would provide the altitude, endurance and fuselage volume
capabilities necessary to meet the established requirements for SOFIA. Consequently, a two-phase
concept definition study was implemented under contract with the Boeing Military Airplane Company
(BMAC) to develop concepts for aircraft modification, determine aircraft performance capabilities,
and estimate costs for the SOFIA Aircraft System. A major Phase | BMAC effort concentrated on the
required aircraft modifications for different telescope (primary mirror) diameters, in the range of 2.5-
3.5 meters, assuming an /1 primary mirror to size the telescope length. Having established the 747SP
model as the most suitable platform, BMAC showed in Phase | that a 3m sytem was the upper limit of
telescope size which would fit within the existing fuselage/main deck floor volume; cost was shown to
be prohibitive to modify any of these existing structures (i.e., "bulge" the fuselage and lower the floor)
to accommodate telescopes greater than 3 meters. Preliminary concepts and ROM costs were
developed for the various alternatives during Phase 1. Subsequently, in the Phase I aircraft
modification study, the trade space was narrowed so that the BMAC effort concentrated on more
detailed analyses, concept refinement, and updated costs for a baseline 3 meter telescope, with
preliminary external dimensions and requirements provided by ARC. The objectives, requirements,
concept definition, top-level interfaces, design drivers, and major issues developed by BMAC during
the Phase Il study are described in this section. More details of their study results, including
component drawings, are available in the BMAC Phase II Final Technical Report.
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Study Ohjectives

The primary goal of the contracted Phase A aircraft modification system level studies was to establish
the feasibility of installing a large (3 meter class) telescope in a wide body aircraft (Boeing-7417SP) to
provide an airborrie platform for infrared astronomy. The Phase I study objectives were: development
of a conceptual configuration that is not cost prohibitive, yet satisfies system level requirements;
preparation of a preliminary ROM cost estimate and program schedule for subsequent aircraft
modification and mission equipment installation; and identification of issues and technical problems
that appear to have significant cost, schedule, or performance impact. The Phase Il study was
intended to refine the selected Phase I concept and further develop it into a more mature concept,
ineluding preliminary system performance requirements. The Phase II objectives were: determine key
aircraft/subsystem requirements for incorporation into the NASA SOFIA requirements document
(PD-2000); estimate the drag increment for the baseline Phase Il aero-optics (boundary layer control
(BLC)) interface configuration; develop stress data and analyses to validate the structural modification
concept; develop and refine the Phase II conceptual configuration based on the established
requirements; establish requirements sensitivity for identified "design drivers"; and develop a
cost/schedule for the updated configuration, with increased visibility (i.e., breakdown) to improve
confidence in the cost estimate.
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The SOFIA Aircraft System requirements fall into three basic categories: aircraft performance
capabilities; mission equipment, crew and other accommodations; and the cavity modification. The
modified aircraft performance requirements for a science mission payload include maximum time to
climb to FL410, minimum endurance at that altitude in observing configuration, and platform attitude
accuracy and stability while observing. For deployment or ferry missions, a minimum aircraft range is

established with door closed and carrying the crew and support equipment needed for remote
operations.

Aircraft accommodations for science mission equipment and crew include equipment (consoles, racks)
mounting provisions, cabin environment limits, communications interfaces, cable routing
accommodations, safety/emergency equipment provisions, electrical power interfaces, passenger
seating, galley/lavatory provisions, ete. Other accommodations include provision of fuselage ports for
water vapor (atmospheric overburden) monitors, and aft mounting for air compressors, vacuum pumps
and nitrogen tanks with associated line routing to the cavity, V.LS./air bearing or science instrument.
A communications interface between the mission computer (CPU) and the aircraft autopilot is needed
to enable remote aircraft steering commands, to keep the telescope within its motion envelope while
tracking celestial objects. Also, data from the aircraft's air data computer (e.g., speed, altitude, wind
vector) is routed to the mission computer for archiving. Detailed requirements for these
accommodations are delineated in the "SOFIA and Related Requirements" specification (PD-2000), and
in the Statement of Work specifications for the BMAC aircraft modification study contract.
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Aircraft System Requirements Summary (Contd)

The chart summarizes requirements levied on the aircraft cavity modification for Telescope System
accommodations. First, the cavity geometry must allow sufficient "dynamic envelope” for the ~ 3
meter telescope with its required motions, including elevation range, cross-elevation range, and
vibration isolation system travel; cavity devices must be located accordingly. A preliminary limit on
the cavity structure mass (i.e., above a standard configuration aircraft) has been established to allow
sufficient aircraft performance capability. (To the extent that the cavity, telescope, and mission
equipment/payload masses increase beyond current goals, engine performance enhancement will be
needed to meet the aircraft performance requirements; drag increase is also a factor). In order to
minimize cavity convection and radiation due to temperature differences across the bulkheads, a
maximum thermal transfer goal of 2000W has been established; convection currents contribute directly
to "seeing" image degradation, and radiation (i.e., hot surfaces) may add noise to the IR signal.

The cavity opening dimensions are established, given the telescope size and motion range, to preclude
vignetting of the image at motion extremes. The two-section door must reduce this opening by
following telescope elevation motion, in order to reduce drag; it must be fully operable on the ground
and in-flight and must open the required amount within 3 minutes. For control of the shear layer (to
minimize "seeing" effects) a segmented fence mounted on the fuselage forward of the cavity, and an
aft bulkhead mounted passive "ramp" are the current baseline; the fence segments will deploy and
retract to follow the door and telescope motion, to minimize drag. Future wind tunnel testing results
may modify the shear layer control concept. .

Several additional cavity requirements relate to accommodating equipment routing and access
provisions between the cabin and the cavity. For instance, power/communications cables and
pneumatic lines will have to traverse the bulkhead interface, requiring feedthrough provisions.
Additionally, ground access to the cavity (e.g., for instrument mounting at Cassegrain location) must
be accommodated; a door in the forward bulkhead is to be provided for this purpose. The forward
bulkhead is also required to house the telescope capture/locking device. The aft bulkhead must
accommodate the vibration isolation system mounts and leave a circular cutout for insertion of the air
bearing with its pressure seal; it also will have an observation window to allow inflight monitoring of
the telescope and cavity sytems. Finally, a range of interfaces must be provided for the cavity
environmental control systems, including ducts/ports for the ground-based cooling system, the aircraft
nitrogen purge/dehumidification/cooling system, and the aircraft cavity heating system. These
provisions are depicted in several of the figures which follow.
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Aircraft Concept

The following charts detail the BMAC Phase A concept for the SOFIA platform, for which a Boeing
747-SP is baselined. As shown, the 3-meter telescope is installed in a cavity forward of the wing,
where the fuselage cross-section is greatest. Two full-depth pressure bulkheads separate the cavity
from the fore and aft cabins; the aft bulkhead supports the entire Telescope System weight via the
bulkhead-mounted vibration isolation system. Two pressurized 36-inch diameter tunnels connect the
two cabins under the cavity floor (unpressurized area); one tunnel is used for personnel transfer with a

"cart" and the other is for equipment systems routing (wiring, tubing, etc.). Ladders and access doors
are provided in both cabin floors for access to the under-floor tunnel exits.

An equipment hoist is provided above the instrument mount/counterweight to assist in instrument
handling. An "operation platform" is shown aft of the instrument mount allowing inflight and ground
access to the Nasmyth instrument. One experimenter position is located beside the counterweight,
with a console, seat and equipment rack.

The remainder of the mission consoles, seats and racks are located in the aft aircraft section behind a
noise-attenuating partition. This location provides a quieter environment and assists in ajircraft c.g.
balancing. Lavatories and galleys are located in the aft compartment. The air compressors (for air
bearing and vibration isolation system) are shown in the aft cargo compartment, and the LNg tanks for
cavity dehumidification/cooldown are located in the unpressurized tail area. Five passenger doors
remain "unplugged", four in the aft section and one forward of the cavity. The cargo compartment is
accessible through the standard external cargo door and a cabin floor mounted hatch and ladder. A
power distribution panel is located forward of the cabin partition, near a 4-inch diameter upper
fuselage hole for installation of a water vapor monitor.

5-10



11-S

¥ 24 W
—_ —
N . s ——— —
; ° o NM; B vv%y w o
» % o % SN | N -
— — — SHOSSIWoMOI wiv - L e — ﬁnﬂt .ln
*AGap-2 _ w v /// ~ N / P ..U
4T 9000 1I1-wIS 2ixe . —_ x._ N —u— - — Q
- - e —— g h
v vn.nmmfwu.“«“iwa%m - ! » -/nbu Ntew M.— 0
Oy o - =~ - — it e T
Y e3I5v e AW 0IS vy ‘\/\\\+ m - Q
HOeNL v — — - 48
“nIM 094.0€Q ! - 00g v — o
-09y, MILSi 0 — O%av ) —_ o
Swnvi N1 2 — - pd - — i
e A I ¢ Q.
e 4 , =
4000 951)Iv av e . S ~‘..:.....unnu-......|...34v_ .............. i T
K £ ~
- ~ - V\l\)\li\\'\r_ * + Jv ¥ +—+-r ¥ ~ -r- e -~ ”..“‘
~ - — Rl R . | R . : R
AT el .- I B e
; - =~ ~ i - - -
R +ds-2 | Zleoogoczoodiebelc flhooooar oo
) o % . | \r_‘ I S TR e Yiva 1. ety
LI R R g ooy N
| o L_ - i 2030 Cue0d - 4 :
N Q.2xe,  xm, 4 . < 3 -on
r ‘\\V\'I\\\'Arl!l|)/b/ A15as NOT1ISIR0I Y TVE — T oreQuvavta ﬂ,ﬂi
L "
£/ s | T 1Y o
,ﬂ ' v ! e 0. 140m 0'n fO4 3°0u via e T 1L wwa o
o \ . H - X 3>
] 169 2l
\\ ~ c uhvu i
/ vis '

. v 179v801S 4300V~ —
ade P
\ w2 T 5 ﬁv Mgy G v I
s 1015 s 9000 $$333% —
. «— =S0D0 0%uv] 9N g
p
4 A TddNS WiV .S @ vV nsSIee O o0t
7 AILSsS ANPNIVA — \l -—_Ilv vis
20a ONOMD 2:42 £ v p; .
- TN ¥ 7 ' : .
o ; L QYINRN NOSSIud = : I fowe
JE 1 <
=300v ° $5333¢ —4, e iy & 2! w007, cowvd b
f 1o - R by 0 J01
«CQ uw - [ HIERRF IR E )
s — . -4 RS & 4v39 150M
. R = = ke 58 Gk ¢ I4l|\ \g
h N | 1€234 0 : ot
I SRR ) o, : N
[} . 1’ . P .
B Ty .. o h
S S of g sl [ TS JIEST I . 00ooCoCcjoooocooao
ve 3 — PO ¢ r....nﬁ.nm-r. -
Y N
~.29 €000 9N e — ! s \
) N
o1y N ] ﬁnur. ..............................
vy '
! by
R AN
——— ¥y = : -.h-.
v — RGN 4
e — b et AWO 3015 wy
3 B e Wil ~— " w00d i8in3
< &3 Ouddv 22x0!
3. ime €Y~ —nav( _ TR s M3
Eoodd  poon TN
0 00¢ 9 09 00 02%}
0o oga Pe,% ﬂ s es Ty
/\\ N p—

(vdO1) SNOILYGOWWOOIV TINNOSHId HOd4d LNOAV1

Jd

AUID YIIBISIY Sawry

VIdIQS



S>OIF LA

| _ Ames Research Center

LAYOUT FOR PERSONNEL ACCOMMODATIONS (LOPA) (CONTD)

-
9
“ p
" E
! H
———— 1
me” | TueeE L
I —
a >
TELESCOPE I\ s i P Co oPERTORS
p—— L
nmmmuw.uﬂl B Enm PLATF ORY
B _ | -
o oo Tr7 4Nt ] m
€/t ACCES =~ W } €oUtPuENT HOISTY
gD m VST |
L ADOER H 11
m- m»ﬂﬂmolni ..J-R\Yn € wagus
..................... ng /r!.ﬂﬂ.’ _ —=
"Mnmnm.n! FLOO® i L u
(Y
936" :‘Ar -
CARGO P e I\ PRE SUmE ﬁ 2oxze fovsaLe
PLu6 T3 ooo L 2. 00 ?ﬂn..ﬂ“hcoo.x SIoES PLAN VIEW
w286 00 _.

~ POWER OISTAIBUTION

\ PanEL g ,lo:. ACQUISIY ION SYSTEW
m / 3 / J CONTROL CONSOLE j m
& ..Iv-l::?/ L] \ h \I..o-w “une p &
| RS _ 4 j

‘f]L
JQ"’
11

&F/———
éé@guug

"4

v ’e
\Fgl LOBE ACCESS /\)-l COMPRE SSORS

5-12

. . et Y
FYd haadin

BES

i

M'-‘Vﬂé}, Ui iy

<
-~



£I-S

FREIE U ST TR N e B Oﬂ<;uOu
Iy NS J
Qv luw NG JR
IS e -~ - L o — =
W R T el
owoome $02° T U — N 34,
{ .
ey - (o
T 4/ G
J
H TN e —
L __ | ]
T m 3 2
> -
5 ] & .
[} [+] o W
- »2330 d¥3ddn
bo 00

Qv d2 -
IBNSS gy —

*330 MIgam . - _

_

SSIIDVv oMLy

1noLn)y
tisix3

-« 73S
- » - ic
0% $9 s 05 §9 e
9% &2 e 00 08 Q-
oC 9t © ~ 00 9=
= A '
R Y
NI
:
- -
N
00 2. - +/
i
had .
' T
00 652 —~
20 v8 Q¢
Y ’
00 982
09 7 Q&
00 $6 @ - -
00 0
( h(3
\
~—
oy - 3"v3S
00 ¢2% .S
w31+ =v3g
G-€ _13S
1
% g e % 8"
00 %€ € — - — ~ 00 9€ ¢
hd
»
~ N PR
tom A
\) — ~a \
00 002V . e e
e _
— ' !
_ _ L
\ ‘ !
10| ~
\ —

/r%@ e
JinvN 000 IY

(A1NOD) (VdO1T) SNOILVAONWNOIOV TINNOSHId HO4 LNOAVT

LA

POIR QUL Y

LY Wass sy
PN LI

%

191Ud)) YI1BISIY Ssowry

VIdIOS



Cavity Maodification Caoncept

The drawing illustrates the various physical modifications to the forward section of the SOFIA aircraft
for accommodating the telescope. The two full-depth pressure bulkheads are shown at aircraft
stations 520 and 700; the telescope centerline is at station 601.6 (the numbers refer to inches measured
from a forward datum). The upper and lower sills are the extremes of the cavity opening; the two-
section door moves within this envelope. The forward end of the cavity is bounded by the forward
bulkhead; the aft end is "stopped" by the aerodynamic ramp, which provides for smooth reattachment
of the shear layer. Not shown is the boundary layer control (BLC) fence, to be located outside the
fuselage ahead of the forward bulkhead. The "air chambers" depicted are plenums to help route air
flow around the cavity and assist in thermal isolation; it is currently felt that these add unnecessary
complexity and will not be needed. The external doubler is additional structure required to stiffen the
remaining fuselage around the cavity. Although the chart shows that the upper deck floor/beams are
to be deleted in the area of the counterweight, the actual need for this will depend on the final
counterweight configuration selected. (As discussed in Section 3, the counterweight would be more
weight efficient if it were longer and narrower). The concept keeps the main deck floor in its standard
location in the cavity to minimize modification cost and complexity. The "hidden" ground cooling duct
enables transfer of cold air from the ground cooling system, through a fuselage port, to a port in the
cavity floor.
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Cavity Modification Concept AOomn&
DEEEE

The figure depicts the layout for the F.S. 700 pressure bulkhead, with associated provisions (note that
this view is looking aft - telescope points to the right). The main features shown are: the upper and
lower sills for the cavity opening; the upper and lower cavity door tracks; the aerodynamic ramp
location; two 12-inch square doors for small equipment and a 6-inch diameter window; the floor panel
and external doubler locations; the vertical sub-floor structural beams; aircraft control cable rerouting
locations; the two sub-floor transfer tunnels; the ground cooling duct routing; and the access hatch and
ladder leading from the main cabin floor to the lower floor for tunnel access.
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Cavity Modification Concept AOA_:_EV
Aft Cavity Bulkhead Structure

The aft bulkhead of the cavity housing the telescope is designed for 18.8 psi pressure (the ultimate
pressure load based on 2 factors of the maximum relief pressure of 9.4 psi, for normal operating
pressure of 9.0 psi). The construction consists of horizontal beams at 20 inch spacing with a moment
of inertia ranging from 600 to 1500 in* ("areal moment") depending on beam length and location. The
beams are 20 inches deep and are "strength designed". This design maintains maximum deflection
limits of 1/2 degree rotation of the bulkhead at the telescope rotation axis, at 9.4 psi. 20 inch long
vertical stiffeners are located every 10 inches.

The main beams (2 vertical and 2 horizontal) surrounding the air bearing cutout as well as other highly
loaded beams are made failsafe by using dual chord caps and web. Additional beam strength at the
center of the bulkhead is provided by adding radius extrusions that can be tailored for loads to save
weight if required. The bulkhead web is .080-inch 2024-T3 aluminum for pressure, with .040-inch
bonded straps at beam locations to prevent tearing at fasteners. Beam chords in tension are 2024
material and chords in compression are 7075 material. Loads from the bulkhead are transmitted to the
side of the body skin with intercostals located between existing stringers. The telescope support
consists of a closed torque box attaching to the telescope at the inner circle and to the bulkhead at the
outer perimeter with internal ribs every 15 degrees from the inner circle radius. The torque box depth
is 10 inches, with .063 gage 2024 skins. The chord members of the inner circle are sized to maintain a
constant (as close as possible) deflection under pressurization at points of contact with the air bearing.
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Cavity Modification Concept (Contd)
Forward Cavity Bulkhead Structure

The F.S. 520 (forward) pressure bulkhead is also designed for 18.8 psi (2 factors on relief value). The
construction is similar to the aft bulkhead, except it contains no air bearing cutout, but has a forward
opening plug door measuring 40x80 inches for access to the cavity. This bulkhead contains a slip joint
for the telescope locking "trunnion" to compensate for relative deflection occurring between the two
bulkheads, from pressure :ﬁ&:n variation. The bulkhead is strength designed with areal moments
ranging from 600 to 1000 in®, depending on beam location and length. The loads from the bulkhead are
transmitted to the side of body skin with intercostals between the stringers, extending forward of the
bulkhead. The bulkhead to skin intercostals are basically back-to-back angles for failsafe design,
located between existing body stringers. The higher-loaded intercostals will spread the load over 40
inches (2 frame bays) in length; others will be 20 inches long. The "kick" loads or radial frame
reactions will require further analysis to verify design adequacy.
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Cavity Modification Concept (Contd)

Cavity Geometry

The drawing depicts the cavity volume available at the telescope centerline, located at F.S. 601.6.
The 3-meter telescope conceptual design, provided to BMAC by ARC, is shown in its two extreme
elevation positions, 20 and 60 degrees above horizontal. As can be seen, clearances are not generous.
In fact, the rear-mounted Cassegrain instrument shown impinges on the cavity floor at the higher
elevation; however, it is improbable that instruments of this length will be necessary. A more serious
issue is the proximity of the headring to the upper cavity door, and of the primary "tub” to the floor, at
the high elevations. It should be noted that this drawing only depicts a "centered" telescope, so that if
the current + 2° cross-elevation angular range is factored into the "dynamic envelope”, clearance
becomes almost nonexistent. (Indeed, there may be a need to increase the cross-elevation range due to
science considerations). In addition, the vibration isolation system travel, which may be up to ¢ 1 inch
in turbulent conditions, adds directly to the telescope envelope. The location of the center of rotation
(air bearing centerline) has been established with all the clearances in mind, so little can be gained by
moving it. These factors point up the need for continuing coordination and design optimization for
both the telescope and cavity. The location of "stress points” having been established, it is incumbent
on both sides to improve clearances in these areas by modifying geometry, if possible. To a large
extent, this has already been accomplished in the cavity design, in that the upper door track has been
located as close to the fuselage as possible. Of course, the ultimate resolution, if it becomes
necessary, is a reduction in telescope size or motion ranges. It has already been established that

"bulging" of the fuselage skin or lowering the floor would be quite cost prohibitive (this issue was
studied in an earlier concept for a 3.5 meter telescope).
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Cavity Modifieation Concept .Om_:e
Cavity Door

The figure illustrates the concept developed for the cavity open port door installation. The conecept
has evolved to a configuration which permits penetration of the aft aerodynamic ramp by the door
structure. To accomplish this, the concept utilizes a flexible aerodynamic seal over the ramp, which is
positioned and controlled by rollers on the door segments operating like a roll-top desk. The flexible
seal smooths the airflow over the ramp and is normally open when the door is closed, and is in a sealing
position when the door is open. Environmental seals are provided at other door locations to preclude
water penetration into the cavity.

With this configuration, the forward and aft door tracks can be located in line. Two track rollers are
located at each segment joint which (with shared rollers) provides four track rollers per segment at
each end. Fore/aft stability is provided by grooves in the aft track; the forward track is smooth and
allows for structural deflections up to 1/2 inch. Each door segment is designed as a box structure with
machined end fittings and hinges at top and bottom. The complete door is comprised of two sections
of eleven 10-inch segments each; the upper section rolls up and the lower rolls down allowing the doors
to track telescope elevation changes. The doors are actuated by a rack and pinion drive system
located on the bottom segment of the lower door and the top segment of the upper door. Thus the
racks are contained within the fuselage, permitting rigid structure between forward and aft racks to
avoid binding. Suspension points from primary structure are chosen for minimum induced deflections.

The door extends from F.S. 523 to F.S. 683; its depth is 4 inches with an .040 outer skin and .040 inner
skin, with access holes for pressure relief and fastener installation access. Bonded skin bands at the
edges of the outer skin and rib locations will provide extra thickness for countersunk fasteners. Ribs
are added every 20 inches along the door length for panel breakers and to hold door shape. Pressure
difference over the entire door is 1.5 psi maximum, ultimate.
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Cavity Modification Concept (Contd)
Shear Layer Caontrol

There are many options for controlling the shear layer over the cavity open port; a well-behaved,
continuous shear layer is important for minimizing the effects of "seeing" on telescope optical
performance. Main options include a passive aft ramp alone, an aft ramp with active blowing from the
forward bulkhead, and a forward external fence with aft ramp. The latter configuration has been
chosen as a conservative approach with minimum complexity for this study phase; future
computational analyses and wind tunnel testing will be needed to determine the optimum
configuration.

The figure shows a rear view of the deployed segmented fence, which is mounted on the fuselage
forward of the cavity. The fence consists of a series of individually actuated porous panels. Each
panel is approximately 25 inches by 16 inches and is constructed with a frame of stainless steel tubing,
welded at each corner and covered with a screen. The screen is a thin gage stainless steel sheet
completely perforated with 3/16-inch diameter holes of 1/4-inch centers; it is welded all around to the
tube frame. A hydraulic "piston" actuation system was chosen to deploy the panels approximately 30°
from contour; the individual actuation concept allows the fence to "track" the telescope in elevation
angle and, in turn, the open port area of the door. Having the fence only partially deployed
(approximately 8 of 14 panels) at any given time improves aircraft performance by reducing drag. The
aerodynamic aft ramp is sized for air impingement at 7.5° off contour from the forward lip, and is
installed on the aft bulkhead with a flexible seal cutout for the door penetration.
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Aircraft Modification Stress Analysis

The BMAC aircraft system concept study included performance of stress analyses in various areas,
including fuselage reinforcement around the open port, pressure loads and telescope cutout in the aft
bulkhead, pressure loads and access door in the forward bulkhead, and the floor tie in the bulkhead
design. For the aft bulkhead the overall arrangement was studied extensively, and the proposed
concept utilizes uniquely sized beams in a lattice arrangement, with overall and relative displacements
manageable at efficient material working stresses. The air bearing to bulkhead interface arrangement
with radial intercostals from bearing to sills and torque cells resulted in bearing to bulkhead relative
deflections and loads that are manageable. The critical design load on the aft bulkhead (by a large
margin) is pressurization, and all critical bulkhead elements are split for fail-safe damage tolerance.

The forward pressure bulkhead has the same general arrangement except for the access door framing
and reinforcement required. The non-pressurized cavity floor currently baselined requires shear-only
connection to bulkheads, with the induced loads and deflections from the bulkheads disabled.
Unstiffened honeycomb panels are proposed as the best option, with the lower face sheet used to
replace part of the torsional stiffness lost in the cavity cutout area; the upper facesheet helps carry
bending loads, local personnel walking and other "abuse” loads. For and aft slots are provided at both
ends of panel to release axial load capacity of panel caused by large relative deflection of the two
bulkheads. (An alternate pressurized floor concept was also studied and is considered viable, with
some weight penalty.)

For the cutout and monocoque sizing, the overall size of the open port is the primary driver. Various
cutouts, sizes and bulkhead stations were studied. The ramp and fence loads and stiffening
requirements have not been definitized to date; however, the approximate geometry appears feasible.
Further study is also required for the monocoque reinforcement, with the final configuration dependent
on stiffness as well as static load requirements. The preliminary door concept is complete and appears
feasible; however, dynamic environments are still to be investigated to verify the initial design.
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Modified Aircraft Drag Analysi

Drag increments were estimated for the current configuration with an open port 180" x 210" in size, an
aft ramp and a KAO-like fence forward of the open port. Four basic modes and fence/door positions
were studied. They are: 1) Flight mode, where the door is closed and fence retracted, for takeoff,
climb, descent and landing and ferry flights; 2) Observation "Mode I" with fence retracted and doors
partially open and tracking the telescope, for comparison with fence deployed mode; 3) Observation
"Mode II" with door and fence tracking the telescope (current baseline); and 4) Observation "Mode 111",
with door fully open and fence fully deployed, representing a back-up or emergency mode of operation,
giving worst-case drag and probable strong buffeting.

The drag analysis was conducted by estimating the effects of each of the drag producing elements,
shown as a "flat-plate equivalent” in square feet, and summing the increments for total drag in each
mode. The elements are: a) forward lip and aft-facing step, which is the surface "step-down" from the
forward fuselage skin to the door contour; b) the aft ramp with corrections for the gaps; at the aft
edge of the door and the contribution of the gap covers over the door hanger/track follower; ¢) the
door surface (closed, open, or tracking) with corrections for the upper and lower sill and the
grooves/gaps between the door segments and circumferential gaps; d) constant correction for the
removed skin in the open port area (this is subtracted); e) fence retracted (D), fully deployed (U), or
tracking (T), including fence porosity; and f) "interference" effects corrections, such as drag generated
by flow changes on or around adjacent surfaces and the wing root/body intersection; a nominal 10% of
the other drag increments was assigned for this parameter in each mode.

5-30



1¢-§

AHVANWNNS 9VvHA TVLINIWIHONI VI40S

. pakojdaqg yn4 eouay
ubspez|ybsgge ubseogr | ybsze W bs g0 ubs v ybseg uadQ N4 100Q
(n) (o) Il ®POW UONEAIASQQ
) . . . . . . Bunjoes) aoue 4 g 100Q
wbseoz|ubsost ybsoczt | ubsze ubsziy ubs g5 4 bsge's 1 BPOYY UONEAI2SA0

[laen) (130)
6unjoes)
wbs 16| ubsyg ubsgoy | ybsege wbsziy wbsss: | ybsoss 100Q ‘paidenay esua 4
l(a) :] 8pOY UOINBAIBSQQ

(130)
(ka4 3 qund
ubsog| ubses ybsgoL | ybsgs uwbsgpe ubsop | ubszze 10} *6e1Q 1se8)
(@) ) :apoyy 6n4

(1) Bunyoesy us (1)Bunyoesy
%01 (n) dn | perocwey (0) wedo dwey dn
Arewwng [aoussepeiull () umoq sso7 | () poso W premio]
82ua 4 100Q

J9JUd)) YIIedsay sawy

ViidIOS




Aircraft Mass Summary

The chart shows a breakdown of the SOFIA aircraft mission weight and center of gravity; the latter is
given in terms of the "balance arm" in inches from a forward datum, and percent of "mean
aerodynamic chord" which is used to evaluate c.g. limits relative to the allowable envelope. The
SOFIA "pre-mod" operating empty weight (OEW) is the basic 747SP dry weight with approximately
60,000 Ibs of standard airline provisions deleted; the main deleted items include galley structures and
food, life rafts and beacons, escape slides, passenger accommodations, cargo handling equipment, some
doors and windows, etc. Addition of the "baseline" payload and ballast (see breakdown in Section 3)
gives the "Projected SOFIA Zero-Fuel Weight" of about 338,000 lbs. The fuel load shown is for a
maximum endurance mission (e.g., for ferry or deployment). For a typical science mission, the
maximum ramp or taxi gross weight envisioned is ~ 485,000 1bs, to allow direct ascent to 41,000 ft.,
and maintain that altitude with door open and fence deployed. This means that the science mission

fuel load is about 147,000 lbs. Aircraft endurance at operating altitude is shown on the next chart,
against payload and drag.
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Aircraft Performance for Science Mission

The chart shows the "standard" Boeing 747SP (i.e., with existing engines) performance capability for
the SOFIA science mission. The critical parameter, time at or above 41,000 ft., is plotted against
payload weight for two cases of drag increment. Entering assumptions are operating empty weight
(after airline equipment deletions), climb with door closed/fence retracted, operation at cruise ceiling
(allowing 300 feet/minute climb capability - standard), cruise at most efficient speed (Mach 0.84),
loiter at best endurance Mach, 5% conservatism on expected fuel flow, and a standard fue] reserve for
instrument flight rules (IFR) operation.

The chart was developed during an earlier study phase, when total payload was expected to be above
90,000 Ibs. The current payload plus ballast goal of -~ 72,000 1bs with 20.9 square foot drag increment
allows approximately 5.8 hours at or above 41,000 feet, for a 485,000 Ib. ramp weight. Achieving the
firm requirement of 6.5 hours at altitude therefore requires improvement in mass, drag, and/or engine
performance. As previously shown, mass margins for the 3-meter telescope (with given image quality
requirements) are non-existent to meet its goal. Other mass estimates are also felt to have no
margin. The performance sensitivity to drag points up the need for wind tunnel testing to establish the
minimum drag configuration which gives adequate shear layer control; for instance, deletion of the
fence would reduce the drag increment to approximately 8 square feet, allowing altitude endurance to
increase by about 1.5 hours. An option of last resort is use of "enhanced thrust” engines, which entails
operating the available power plants at higher than standard continuous power settings while at
altitude, accepting increased maintenance requirements and costs. Of course, more powerful (new)
engines are also available, which could be installed for a large cost increase.
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Aircraft System Design Drivers

BMAC conducted an analysis to identify mission and telescope system requirements which are design
drivers for the aircraft system design. Specifically, the effects on aircraft system design for small
changes (10 percent) in these design driving requirements were analyzed, with results shown on the
requirements sensitivity matrix. The matrix shows the trend of costs and performance for the changes
from the baseline as noted: telescope size (envelope) decreased by 10%; payload weight decreased by
10%; aperture size (i.e., open port) decreased by 10%; aero-optics interface (fence deletion); and
science mission capability (¢ 10 percent time at altitude). The only change from the Phase A baseline
that caused any significant change in design cost was deletion of the porous fence. There would be a

small change in the design effort associated with reducing the telescope size, aperture, and weight, but
it would be insignificant.

All of the requirements changes that impact the aircraft modification impact the build cost. As the
number, size and weight of the modification assembly/parts decrease, the build cost would decrease.
There would be no impact on design or build costs for changing the time on station, since this does not
affect the aircraft modification. All of the requirement decreases would result in an aircraft
performance increase, proportional to the decrease in drag or weight. Increasing on station (at
altitude) time by 10% would result in a 600 foot decrease in initial cruise altitude. The "mission"
(science) performance would be proportionally decreased when the telescope/aperture size is
decreased.

No change in mission performance due to the decrease in payload weight is based on the assumption
that the weight reduction does not affect the quality of the optical components. At this time, there is
not adequate data available to conclusively predict the impact that the reduction of the porous fence
would have on mission (science) performance. Increasing the time on station would not affect mission
performance except for the obvious increase in astronomical observation time available; however, the
associated increase in water vapor overburden would decrease observational sensitivity.
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5.4

Cavity Environmental Contral
Ohjectives

There are two objectives for the cavity's environment control. The first is the ability to cool the
cavity and Telescope to -30°F with a one hour time constant. The second requires that condensation
never occur within the cavity.

Caonstraints

The airborne environmental control equipment also has a set of constraints that must be adhered to.
These constraints include temperature and pressure. Parts must operate at low temperatures (-40°F)
and pressures (2.7 psia).

Weight must also be restricted, as it is a critical factor for SOFIA. Since the telescope already adds a
considerable amount of weight forward, it is critical to minimize support equipment weight there. A
circulating fan and reheat coil will add approximately 400 lbs, while having those along with the
cooling coil adds about 2000 1bs. The ground based cooling equipment that is off loaded at each base of
operations is expected to weigh approximately 15,000 1bs.

Naturally any system that is chosen will require modifications to meet SOFIA's unique needs. For one,
it must be arranged to fit inside the existing cargo bay. Our equipment would require (2) 64"x96"x125"
pallets. Second, the motors must operate off aircraft 400 Hz power. Another might be to add
hydraulic mobility to the pallets.

5-38



6¢-S

1HOIIM -

Q3INIVINOD-J713S -

ALNgIX3ad -

ALNMIION -

NOLLVHIdO 3HNSSIHd MO -
NOILYH3dO 3HN1VHIdWNIL MOT -
H3IMOd ZH 00¥ -

3Z1S TVNOISNINIg - ‘SINIVHLSNOD

ALIAVD 3HL NIHLIM HNJD0 HIAIN TIVHS NOLLYSNIANOD
INVISNOD JNIL HNOH INO V HLIM ‘4.0€- OL 3d0OSTTIL ANV ALIAVD TO0D - :S3AILO3rao

SINIVHLSNOD ANV S3AILOIrdO TOHLNOD LNIWNOHIANI ALIAVD

J9JUd]) YIrieasay souly

VIidIOS



Cooling Approach Optians

Cavity cooling will best be accomplished using mechanical refrigeration. A typical unit could consist
of a modified stock cascade refrigerant system (e.g., Edwards CL15-013-AHP). This sytem supplies
-40°F brine with a capacity of 131,000 BTU/HR at an 85°F condensing temperature. With this

equipment a time constant of approximately one hour can be achieved. An air cooled condenser yields
mobility and flexibility to the system.

Direct expansion, that is, using the refrigerant to cool air directly, rather than cooling an intermediate
fluid, could be used. Unfortunately, it is more difficult to control the refrigerant than the fluid.
Therefore, the chilled brine alternative was chosen. :

Stored capacity could be used for cooling. A good source would be to use liquid nitrogen; it's common
and relatively easy to obtain. It does have drawbacks, however. One is quantity; each flight would
require 450 gallons. This capacity has to either be carried on the aircraft or delivered to it at the
airstrip. The first alternative causes large shifts in the aircraft's center of gravity. It also lowers the
maximum operating ceiling - extra weight translates into lower observation altitudes. The second
alternate yields an extra logistics headache (if the liquid nitrogen is indeed available).

The cooling medium for the cavity is air. The air can be cooled on- or off-board the aircraft. There
are advantages and disadvantages to each method. Disadvantages associated with off-board cooling
include large aircraft penetrations, two fans, and additional pallet area. On-board disadvantages
include weight and size penalties in the forward cabin. A roughly 2'x4'x7' airhandler has to fit up
front. The cabinet and ducting for the on-board system must form an external pressure vessel. Note
that shortecomings for one are strengths for the other method. Off-board cooling was chosen.
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Moisture Control Options
The Telescope equipment requires that condensation never occur. Condensation, whether in liquid or

ice form, has a detrimental effect on the mirror and other components. There are four methods for
disposing of condensable moisture; two use dehumidification and two use purging.

The purging method uses a supply of dry gas to displace the moisture in the air. The first of the two
purging methods examined is the dilution method. This alternative fully mixes dry gas with moist air.
Part of the mixture is continuously bled off until a -40°F dewpoint is achieved. This method uses an
unreasonable amount of time and dry gas (62,000 Ibm). The second purging method is the laminar flow
method. A layer of dry gas is introduced slowly into the chamber. The layer thickens, pushing the
moist air out ahead of it. Ideally no mixing will occur between the moist air and dry gas. Although
this method would be difficult to control, it only consumes 40 minutes and 90 gallons of liquid nitrogen.

Dehumidification can be accomplished by chemical or mechanical means. Either a regenerative or
deliquesant desiccant could provide the necessary moisture removal, but both types require mainte-
nance and post filtration. Regenerative type drying typically requires temperatures in excess of 200°F
to reactivate the desiccant. Weight, size and cooling water are also problems. The equipment (from
one source) would weigh 7,000 Ibs, require 24 gpm of cooling water and be 7.5'x7'x13' in size.
Deliquesant desiccants constantly require disposal and replacement. Both types should be kept out of
contact with moisture when not in use. Mechanical dehumidification can be done with the existing
cooling coil. A mixing pump and 3-way valve would be added to modulate the coil temperature. In
addition to those items an immersion heater is required to defrost the coil. See sequence of operation
for further details.

It is desirable to maintain a slightly positive pressure inside the closed cavity. Pressurization excludes
warm, moist air from infiltrating the cavity., There are two ways to achieve this goal. The first is to
tightly seal the cavity. This would be difficult, so it is not a viable option. Leakage must be allowed
for; therefore a supply of dry gas is required to make-up for the gas that leaks out of the cavity.
There are two possible sources of dry gas: one is from the compressed air; the other is boiling cm.m
stored liquid nitrogen. The estimated leak rate is .01 ft3/min at the operating altitude, and .05 ft°/
min at sea level. :
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Reheat Qptions

The cavity and its contents require heating upon descent. The equipment must be heated up to at least
the ground ambient temperature. Thus, when the cavity is opened up on the ground, infiltrating
moisture will not condense onto the equipment. An on-board fan (able to supply 4,000 c¢fm at 1" of
water) and heater ((2) 15 kw) could provide this capacity. A heating rate of 100,000 BTU/HR is
necessary to obtain a 3 hour warm up.

Two possible methods of achieving the heating requirement are: 1) bleed hot, compressed air from the
engines, or 2) electrical resistance heating. Resistance heating is the most feasible. It doesn't require
any engine modifications, and it provides simpler capacity control.
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Sequence of QOperations
Preparation for Ascent

Before each flight the cavity must be cooled. First, the ground-based cooling unit must be connected
to an auxiliary power supply. Then the air supply trunk lines have to be secured to the aircraft under
belly, and the cooling unit is activated.

The cooling unit, consisting of an air cooled chiller and a fan-coil unit, supplies -40°F water to a 3-way
mixing valve. The valve mixes the necessary amount of supply and return brine to maintain the desired
coil temperature. A mixing pump equipped with a pressure regulated bypass and a heater will be
required on the return line to the mixing valve.

The process begins with the fan coil unit being used for dehumidification. The coil temperature
modulates as described previously. At first the cofl temperature will be maintained at 33°F. Moisture
precipitates onto the coil and runs off. Once the return air reaches 35°F, the second stage of
dehumidification is enabled. The coil's temperature is gradually lowered to -40°F. Moisture in the air
now freezes onto the coil. Ice build-up on the coil gradually blocks the air flow. Without air flow,
cooling cannot occur; therefore the pressure drop across the coil is monitored. When it exceeds a
predetermined limit the system defrosts itself.

The defrost cycle first shuts off the -40°F chilled brine supply. Next, an immersion heater in the
return leg is energized. The coil temperature rises to 70°F and is maintained for a short time. During
this time, ice is given a chance to melt and run off the coil. It may be necessary to assist the run-off
process. Upon completion of the defrost cycle the dehumidification cycle takes over again.
Dehumidification continues until -40°F air is supplied. The -40°F air is supplied until either an
embedded sensor reaches the desired temperature or a certain predetermined cooling time elapses.

In order to eliminate moist, warm air from infiltrating, a positive pressure will be maintained in the
cavity. This pressurization, referred to as the purge cycle, begins after the cavity temperature drops
below 35°F. The purge cycle basically operates whenever the cavity doors are closed. The system will
be disabled upon opening the doors. The purge cycle supplies the necessary dry make-up gas to
maintain a slight pressurization of the cavity.
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Sequence of Qperations (Contd)
Ascent

The cavity maintains a positive pressure between itself and the outside. The operation is the same as
that described in the final paragraph of "preparation for ascent". Pressurization is terminated upon
opening the cavity door.

Descent

After door closure, resume positive pressurization of the cavity. Again, the operation is the same as
that in the last paragraph of "Preparation of Ascent". Next, start the onboard circulation fan. Once
flow is established, turn the heater coils on. The system heats the cavity until ground ambient
conditions are re-established after landing. The door remains closed until reheat is completed.
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Pawer Requirements

The power requirements for the various components are shown. The
envisioned will require a maximum of 61 kilowatts for operation.

expected to need. approximately 38 kilowatts; this operation occu
completed.
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Feasihility and Concerns
Feasihilit

Environmental control within the cavity is feasible from both a financial and technical standpoint. It
can be accomplished using modified, but for the most part "off the shelf" equipment and technology.

Concerns

More detail is required to define the compressor system. Currently a system similar, though larger (~3
times), than that on the KAO is envisioned. The supply requirement is basically that for the air
bearing, which is 40 SCFM.

If the cavity's leak rate is maintained at the level predicted herein, then compressed air could be used
for the purge cycle's make-up air requirements. This additional compressed air requirement is small
compared to that of the bearing. However, the compressors would be required to operate during the
entire mission.

The cooling equipment's power draw borders on the high side. Reducing equipment size would be useful
from both a power and dimension stand point. If capacity reductions are made, however, cool down
time would require extension.

Dehumidification by desiccant should not be ruled out yet. Some of its drawbacks may not be too
difficult to overcome.
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Concrlusions

Environmental control within the cavity is feasible from both a finanacial and technical standpoint. It
can be accomplished using modified, but for the most part "off the shelf" equipment and technology.

Cooling and moisture control can be achieved by using a modified low temperature chiller. This chiller
would supply -40°F brine to a temperature regulated coil. The coil would be controlled for both
cooling and dehumidification. All the above items, including a supply fan, would be palletized. This

palletized chilling unit would be left on the ground during observation flights. On board the aireraft
would be a reheat coil, fan and minor duct work.
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5.5

Aircraft Interfaces Summary

The chart summarizes the major interfaces between the aircraft system and the other SOFIA
elements. Detailed interface requirements have been specified in some areas, as delineated in PD-
2000 (e.g., power levels, voltages, etc.), while in other areas only the need for interfaces has been
identified (e.g., telescope pointing control/autopilot). An important effort of future project phases
will be to establish interface responsibilities, boundaries, and detailed technical requirements.

Under structural/mechanical interfaces, the major aircraft/telescope interface is the mounting of the
vibration isolation system/air bearing to the aft cavity bulkhead, for which preliminary drawings have
been developed. The cavity also must provide for electrical/communication cable and pneumatic line
"feedthroughs" from the cabin to the telescope, and routing of these lines (e.g., "wire curtain®) from
bulkhead to telescope. Provisions for mounting consoles, racks, seating, etc. must be made in the
cabin, with associated wire routing provisions. An attachment interface for ground based cavity
cooling/purging equipment must be provided on the fuselage underbelly.

Thermal interfaces include the need for cavity interior insulation to isolate the cavity from the cabin
areas and fuselage exterior; preliminary design and analysis of cavity wall liners has been accomplished
in this area. An option under consideration is to perform initial cavity precool with standard aircraft
air conditioning equipment. Finally, the need for heat rejection from cabin mounted electronic
equipment needs investigation, with possible provision of aircraft "heat sinks".

Acoustic attenuation provisions between cavity and cabin may be needed beyond that provided by the
bulkheads and thermal isolation "covers". A "sound barrier" curtain is to be installed in the aft cabin
immediately forward of the main console. An electrical power distribution panel, with capabilities as
specified in PD-2000, has been baselined for location near the sound partition.

Finally, communications interfaces are needed for aircraft data to be provided to the central
processing unit of the mission management system (e.g., - aircraft position from INS, and wind vector,
temperature, altitude, etc. from air data computer); and a to be determined interface providing
capability for tracker operator control of aircraft pointing via the autopilot is needed.
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5.6

Canelusi 1 Major 1
Conclusions

The Boeing 747SP remains the platform of choice for the SOFIA mission. Of the several conclusions
reached during the BMAC Phase A study, the following four appear to be most significant.

1.

The study has confirmed the feasibility of installing a 3-meter class telescope in a 747SP, with
no "show stoppers" having surfaced during development of the installation concept. The concept
provides adequate load paths around the open port. The critical design load on the forward and
aft bulkhead is pressurization, and for operating pressures the relative displacement between
the bulkheads is less than 3 inches; the maximum rotation measured at the center of rotation is
less than one-half degree. Preliminary analysis indicates that the combined structural members
of this concept will maintain the fuselage bending stiffness and strength at approximately its
original value with the large port. Further analysis is required to determine if this installation
is sensitive from the standpoint of torsional strength, rigidity and dynamies (vibration and
flutter modes).

A preliminary drag analysis was performed that estimated the potential performance impact in
terms of equivalent flat plate area for the baselined configuration. Based on the performance
data developed, the potential endurance at or above FL 410 (with door and fence tracking the
telescope) is approximately 5.5 hours for a ramp weight of approximately 485,000 Ibs.

For the concept developed, payload weights greater than 45,500 1bs (31,185 1bs forward payload
and 14,335 1bs. aft) will require ballast to satisfy aircraft c.g. requirements. For the current
payload goal of 61,875 Ibs the ballast requirements are 10,020 Ibs for a total payload of 71,805
_gi

The design drivers analyzed during the study were selected on the basis of significant cost
sensitive Issues, and the effects of small (10 percent) changes in the telescope/mission
requirements were evaluated. Based on this analysis the baseline aero-optic configuration (aft
ramp and KAO-type fence) is a major performance/cost driver and should be studied further.
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Issues and Recommendations

Three categories of issues/recommendations are presented from the aircraft system perspective. First
are programmatic jssues that should be addressed from a joint NASA/aircraft contractor
(BMAC)/telescope -contractor total integration/system performance standpoint. Resolution of the four
integration issues can improve overall system performance and favorably impact program cost. These
issues are the telescope size (where 3 meters has no volume/mass margin), telescope cavity
environmental control (possible use of aircraft airconditioning system to reduce carryon
weight/complexity), the aero-optics interface (porous fence drag), and the need for development of a
program interface control document (ICD). Joint resolution of the first three issues will improve
further development of the telescope and aircraft modification concepts, and provide meaningful
critical inputs to a preliminary ICD.

The second category, configuration concept, addresses: structural/dynamic issues which require
further development and analysis before initiating detail design (e.g., NASTRAN modeling); detail
concept development (porous fence and door optimization, frame and stringer detail in cavity section,
bulkhead/floor to monocoque interfaces, cavity design details, and doublers and sill beams required
around open port); and the issue of allowable bulkhead deflection, which impacts modification weight.

The final category, aircraft system revisions, includes those systems concepts whose potential revision
or improvement may have cost and performance impacts. These include: control cables, where
rerouting of all cables as a result of the cavity location should be examined in further detail;
environmental control system, where revisions appear straightforward but need further assessment,
especially if the system is to be used for cavity conditioning; electrical/avionics systems, where a
detailed analysis of changes required for SOFIA implementation (e.g., structural changes, power
provisions, data system links) needs to be accomplished to identify conflicts and their resolution; and,
an ultimate decision, after the system weight and drag values become settled, on the need for
“"enhanced" or even upgraded engines to achieve required mission performance.
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6.1

A critical effort required for the successful accomplishment of any complex hardware development
program is the planning, preparation, and performance of system integration and testing (1&T), flowing
from the lowest component level through build-up stages to the system (observatory) level. Although
technical feasibility is not an issue for the SOFIA 1&T program, it is important in this early phase to
define the scope, levels and general tasks required, in order to assign responsibilities amongst the
various program elements and to provide a basis for cost estimating.

The major elements involved in the SOFIA 1&T program are shown; it is envisioned that each element,
which will likely involve a separate development effort (i.e., different contractors), will integrate and
test that entire element as a distinet entity prior to system level 1&T. A candidate flow for the entire
program is shown later. Note here that the science instruments are not shown; in this regard an
aircraft observatory program is quite different from a Space program, in that many experiments will
be routinely installed and removed from the SOFIA facility during its lifetime. Thus it is incumbent on
the investigator team to integrate and test their experiment at their own facility; the SOFIA project
will provide the necessary interface documentation (e.g., User's Guide), and facility simulator
hardware/software at ARC to enable integration and checkout of the experiment with the facility.
(Access to the facility simulator shall be provided early enough to assure successful integration prior
to start of the experimenter's flight series.)

The test program must address not only the types of testing required, but the hardware "levels" at
which they are performed. It is too early in the SOFIA program to define what is meant by component,
unit, etc. for each program element, and this will have to be addressed in future phases. However, in
general it is necessary to perform both environmental and functional tests on hardware elements as
they are built up into subsystems, and then functional interface tests between subsystems and major
elements at the observatory level.
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6.2

The chart lists the major documentation and associated tasks needed for a successful system
integration program. It is vital that a formal documentation process be undertaken to assure hardware
compatibility and efficient integration amongst the major program elements. The most critical
lon are the interface control documents and drawings,
which must address all the applicable technieal disciplines, including structural/mechanical, thermal,
electrical, command and data, etc. An interface control process is required at the project
management level to maintain formal configuration control of all the elements; this process initially
establishes baseline interface requirements and controls subsequent changes to assure continued
compatibility across element boundaries. To enable successful configuration control, representatives
must be appointed from all project elements to participate in a configuration control board, under the
direction of central project management. The specifies of this process and organization will be
developed as hardware responsibilities are clarified in future program phases.

Important ancillary functions of project management, which are needed to assure a successful
development effort, include: continuing quality assurance, which is a separate "hardware verification"
organization under each program element; regular integrated technical reviews of development
progress and problems; cost and schedule planning and tracking; and ongoing evaluation/planning for
spare hardware.
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Telescope Assembly Integration and Test Fiow

The chart depicts a preliminary concept for the build-up of the telescope Assembly from its units,
subsystems and sub-assemblies. It is envisioned that initial functional/environmental testing (as
necessary) would “take place at the unit levels shown on the left hand side, before subsequent

integration to the next level. Further functional testing would take place at the second level(s), before
final integration of the Telescope Assembly.



L-9
04— SOINOHLOI 13 TOHLNOD
Oﬂw ot 3D2HNOS DILYWNIN
]lo

p SHOLVTOSI 8IA
SASENS
1081 GIA < SWSINVHOIW ALIHVS
< SO4/WVD 1d 004
- 3INOQ INFWNULSNI

44— 13NVd NNOD 318vD 03713
O4a— ATGNISSY MOANIM 3HNSS3Hd

HO3W HA AJT13 ISHVOD
0 & HO3W DNIHILINID
<+ HOTW ONIDVD
WE-HILNNOD <+ —— HOIN IONVIVE
% IANA < ATONISSY DNIH HOLVIS
4 ATGN3SSY HOLOW 3n0KOL
—— ATGW3SSV OHAD
“
VIS QVIHYING-ONIV3E HIV
<« O“W lw AA‘\\\\\M\\\ SASENS HOSSIHINOD HIV
ATBNISSY —94 ___ 1V3S 9 HOLOH ONIHV3E HIV

3400s3131L SASans
ONIHV3g Hiv

4——— SASHNS ONDIOVHL B OOV
O 4+—— AINISSY HOUHIN AYVILHTL

<« JUNLONYLS ONIHILIN

>s:mmm<O 60 H3AIdS B ONIHAVIH
ww“»ﬂw 3 AIA 3931443 INID
ATGNISSY WSINVHO3N Y3ddOH)D

—O 4 HOHHIN AHVANOD3S

31VdISVE B INNOW HIN Hd

—0 HOHHIN AHVIIHA

ATdWN3ISSY 3d0OS3T3L
WYHOVIQ MOT4 1S31 ANV NOILVHDILNI

BRI YoueIsIY sawmy

VIidIQS



Observatory Leve) Integration and Test

This chart continues the integration process depicted previously for the Telescope Assembly,
combining the latter with the Consoles and Electronics Subsystem build-up, the Ground Support System
and the modified Aircraft System development, culminating in a final integration at the Observatory
level. Preliminary program schedules for these activities have been established, with a view toward
concurrent delivery of the integrated Telescope System and the modified Aireraft System, for program
efficiency. Subsequent to Observatory level integration, system functional (ground) tests and final
flight tests will take place prior to dedication of the facility for initial science operations.
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6.3

Test Program Deseription

The test program for the SOFIA major elements will be performed in various phases. For the aircraft
modification element, early (Phase B) wind tunnel testing is planned using a sub-scale mockup of the
aircraft forward fuselage section with the cavity modification. These tests will investigate various
shear layer control options (e.g., fence with aft ramp, aft ramp alone) to identify an acceptable
approach which creates minimum drag. These tests will also characterize the dynamic and acoustic
loads in the cavity, and wind loads on the telescope (using a simple telescope model), to assist in design
of the cavity and telescope structures. Measurements will also be taken of overall forces/torques on
the fuselage to assess stability and control margins. After the aircraft modification is complete, flight
testing will be performed to verify aircraft performance, stability and control, and the cavity
environment; it has not been determined as yet whether these flight tests will use Telescope System
mass simulators or will await actual installation of the Telescope System.

The integrated Telescope System elements will undergo functional and environmental testing at
various levels during their build-up as previously discussed. Environmental testing concepts are
presented later. The final telescope system level tests may be performed in a ground facility, or after
aircraft installation; verification of the pointing control system will, of course, require testing during
flight.

As previously noted, the functional/environmental testing of the experiments (science instrument and
control electronics) is the responsibility of the investigator team at their home facility. Upon delivery
of the experiment equipment to NASA-Ames prior to a flight series, the experiment will undergo
interface compatibility and functional tests using an ARC-based Telescope System simulator. The
latter will duplicate all Telescope System interfaces and functions, allowing complete checkout of the
experiment prior to installation in the aircraft.
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Environmental Testing Baseline Concepts

The SOFIA program test approach will be analogous to a "protoflight" approach used in space hardware
programs; that is, testing will be performed on the actual flight hardware, avoiding the expense of a
prototype development program. This includes Telescope System and aircraft modification hardware,
at appropriate build-up levels. For acceptance testing, the dynamic test environments (shown in the
chart) will be at levels that are 1.25 times the predicted flight amplitudes. Performance margins will
be demonstrated on selected parameters, such as power supply voltages greater or less than the
expected operating ranges. It is possible that selected items with critical functions, such as operating
mechanisms, will be subjected to qualification-level tests; these tests will verify a 1.5 design margin
for dynamic loads. Finally, spares and refurbished units will be screened for workmanship by testing to
acceptance amplitudes and duration.
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6.4

Summary and Canclusions

This section, has provided a preliminary, top-level description of the integration and test program
planned for SOFIA. More detailed planning will be needed in future program phases to minimize risks
in this area. A necessary precursor to the development of detailed 1&T plans will be the allocation of
specific hardware responsibility for the various program elements, which include the modified Aircraft
System, the Telescope System, and the Ground Support System. The chart lists some of the important
considerations for managing a successful SOFIA I&T program. As can be seen, they all basically
address the need for defining responsibilities in various areas; development of appropriate statements
of work, interface specifications, ete., will follow the hardware responsibility decisions. These
documents must thoroughly address the requirements for each element, maintaining consistency both
within and between the elements.
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7.1

Ground Support Facilities
Scope

This project provides investigator, telescope system, aircraft system, and aircraft ground support
facilities for the Stratospheric Observatory for Infrared Astronomy (SOFIA). The SOFIA is a 3-meter
class telescope mounted in a Boeing 747 aircraft planned as a national observatory to continue NASA's
Airborne IR Astronomy Program into the 1990's as the successor to the Kuiper Airborne Observatory
(KAO).

The proposed two storey building provides office, laboratory and shop facilities for approximately 40
full time employees plus facilities for three teams of visiting researchers at a time (8 - 10 persons per
team). Laboratory facilities accommodate a telescope simulator, static test facility, ADAMS
simulator, experimental equipment support, shop and storage areas. Office facilities include
computational support, astronomical and engineering libraries, and sleeping facilities for 24-hour
operation,

The proposed nose dock provides: a controlled and covered environment in which telescope mainte-
nance and removal may be performed, and where the mirror coating equipment may be housed; crane
and rigging equipment for telescope/primary mirror removal; and office and storage space for
telescope and aircraft support services.

The proposed location, between ARC flight line buildings N248 and N259, is accessible from existing

ramps and taxiways and has long been planned to include a building and hangar facility. The proposed
use of this location for SOFIA thus fits in with the Center's Master Plan for land use.
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Justifieation

The Boeing 747 aircraft proposed for use as the platform for SOFIA is both larger and heavier than any
aircraft currently based at Ames Research Center, and existing ground support facilities are
inadequate for providing the aircraft, telescope, and research investigator requirements of such a
facility as SOFIA.

No alternative solutions for ground support facilities have been identified as acceptable within the
Center. Options investigated included the existing KAO nose dock, modifying the KAO nose dock,
using the existing flight hangar (N211), and constructing a new full hangar with office and laboratory
space. The proposed solution, an office/laboratory building and a 747 nose dock, is the most cost
effective solution while remaining within the Center's plan for land use.

Demand for office, laboratory and hangar facilities is driven by the master SOFIA schedule, which
details telescope installation, checkout, ground and flight tests in 1991-92. Ground Support Facilities
completion in 1990 is critical for support of these tests. Facility non-completion can impact the
SOFIA operations schedule.
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7.2

Aireraft Ground Support Equipment
The Boeing 747SP aircraft proposed for use as the platform for SOFIA is both larger and heavier than

any aircraft currently based at Ames Research Center, and equipment for ground support and routine
maintenance of the aircraft is required.

A tug with a minimum of 50,000 pounds draw bar pull and a tow bar are required. As the aircraft is
considerbly taller than those serviced at Ames, a Hi-Ranger truck (cherry picker), lifts to extend thirty
feet high, and a stair truck are necessary. A full complement of jacks is required to raise the aircraft
and swing the landing gear (8 jacks total), as well as a complement of maintenance stands (6 total).
Engine and APU change kits and engine stands are also necessary. In addition, miscellaneous tools,
kits, parts, and instruments are required for routine aircraft maintenance and servicing. It should be
noted that the equipment listed is a short list of minimum equipment requirements.

The accompanying list applies to aircraft maintenance and servicing. Additional hoists, ramps, stairs,

platforms and/or lifts are required for telescope servicing and researcher support as instruments are
moved into and out of the aircraft. These needs are to be determined.
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SOIFIIA

Ames Research Center

GROUND SUPPORT FACILITY
PROJECT LOCATION
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Ames Research Center

QO>_-W AND GENERAL PLAN FOR SOFIA OPERATIONS

* FLIGHT RATE: 120 RESEARCH FLIGHTS/YEAR
- ULTIMATE GOAL

- REQUIRES A MINIMUM OF 3 YEARS TO ACHIEVE
* INVESTIGATOR TEAMS: 25-30 TEAMS/YEAR

* WORK SCHEDULE:
- 7 DAYSWEEK

- 3SHIFTS/DAY

* TYPICAL FLIGHT SCHEDULE
- RESEARCH FLIGHTS - MONDAY, WEDNESDAY, FRIDAY

- CHANGE EXPERIMENTS, MAINTENANCE, ETC. - SATURDAY, SUNDAY

* STAFFING:

- CIVIL SERVANT AND SUPPORT SERVICE CONTRACT

8-2
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@ @% NN % Ames Research Center

8.2 PROJECT !.>z>mm3mz._. AND ADMINISTRATION

SOFIA PROJECT OFFICE - ARC

» OVERALL RESPONSIBILITY FOR ADMINISTRATION AND MANAGEMENT OF APPROVED PROGRAM

OVERSIGHT

* HEADQUARTERS PROGRAM OFFICE(S)
+ SOFIA USERS
- ANNUAL MEETING OF ALL USERS
- QUARTERLY MEETING OF USERS SUBGROUP, EQUIVALENT TO "MOWG" _u,On AIRBORNE ASTRONOMY

COORDINATION WITH OTHER AMES GROUPS

* E.G,, AIRCRAFT OPERATIONS DIVISION TO DIRECT DAILY SUPPORT AND PARTICIPATION

COORDINATION WITH SUPPORT SERVICE CONTRACTORS (SSC)

* SSCs UNDER SOFIA PROJECT OFFICE CONTROL, EG,
- DATA SYSTEMS

- ENGINEERING, TECHNICAL, AND LOGISTICS

8-4



S-8

SAOIH3d FIONVNILNIVIN 3dOOS313L ANV LIVHOHIV -

S1HOIN4 AONIIDIJ0Hd LOId

SIHOMA ONIHIINIONT ALINOVS

S1HOIN4 HOHV3S3Y
JINAIHIS ATHVY3IA 4O SINIWITT -

SISVE ATHIIM ANV ATHLNOW NO 31vadn -
3INA3IHIS LHOIN4 ATHVIA 4O NOLLYHVd3Hd -

ONIMNA3HIS

1390N8 G3AOHddV 40 TOHLNOD GNV ONIHOLINOW -+

«STIVI dOd. HO4 S139aN8 ATHVIA 40 NOILVHVdIHd

INIWIOVNVIN TVOSHd

(QLNOD) NOILVHLSININGY ANV INIFWIDOVNVIN 1D3roud

19JUd]) YIIBASIY sowry

VIdQS



SOIFIA

Ames Research Center

PROJECT MANAGEMENT AND ADMINISTRATION (CONTD)

DEPLOYMENT PLANNING

* GENERAL ELEMENTS
- SUPPORT FACILITIES AT DEPLOYMENT BASE:
AIRCRAFT SERVICES
SOFIA FACILITY SUPPORT
- HOTEL AND TRANSPORTATION
- TRANSIT FLIGHTS - RESEARCH OR FERRY
* TYPES OF DEPLOYMENTS
- DOMESTIC - TO USA TERRITORY
- INTERNATIONAL
CLEARANCES FROM HOST GOVERNMENTS
PASSPORTS AND VISAS
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% @bﬂs NN \.%\.w | Ames Research Center

INVESTIGATOR SELECTION (CONTD)

* APPROVED BY HEADQUARTERS PROGRAM OFFICES
- PISELECTION
- ASSIGNMENT OF FLIGHTS

- ALLOTMENT OF FUNDING TO Pts

* IMPLEMENTATION OF APPROVED PROGRAM
- NOTIFICATION TO Pis - PROGRAM OR PROJECT SCIENTIST
- SCHEDULING OF FLIGHTS - SOFIA PROJECT OFFICE
- DISBURSEMENT OF Pl FUNDING - SOFIA PROJECT OFFICE
- MONITORING OF GRANTS AND DISBURSEMENTS - SOFIA PROJECT OFFICE
- COORDINATION WITH Pis - WOﬂS PROJECT OFFICE
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Ames Research Center

GROUND OPERATIONS (CONTD)

AIRCRAFT MAINTENANCE

* REPAIRS ASAP TO MAINTAIN FLIGHT SCHEDULE
* REQUIRED PERIODIC INSPECTIONS

- MONTHLY - NON-INTERFERENCE BASIS WITH FLILGHT SCHEDULE
- SEMI-ANNUAL, ANNUAL, BIENNIAL

* SCHEDULED GROUNDING OF AIRCRAFT

PROBABLY DONE AT A MAJOR AIRCRAFT MAINTENANCE BASE
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% @N@ NN & Ames Research Center
P ——————————————————————— e e s

FLIGHT OPERATIONS (CONTD)

IN-FLIGHT ACTIVITIES

* FLIGHT TIMELINE

TO.-60M PREFLIGHT BRIEFING; MANDATORY FOR ALL PARTICIPANTS
TO.-45M BOARD AIRCRAFT
TO.-25M DOOR CLOSES
TO.-15M START TAXI
TO.-0 AIRCRAFT LIFTS OFF RUNWAY
TO.+~30M AIRCRAFT AT FIRST CRUISE ALTITUDE
OPEN DOOR; START OBSERVATIONS
T0.+~7H END OBSERVATIONS: CLOSE DOOR,
START CAVITY PURGE,
START DESCENT
T.0. + 7H30M LAND

SECURE AIRCRAFT AND TELESCOPE SYSTEMS
(~30 MINUTES)
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-@. @%. % % Ames Research Center

8.6  SCIENCE DATA ANALYSIS

DATA COLLECTION DURING FLIGHT

* RESPONSIBILITY OF PI
* METHOD OF COLLECTION
EITHER  SOFIA DATA SYSTEM
OR PI-SUPPLIED DATA SYSTEM

DATA ANALYSIS

* RESPONSIBILITY OF Pt
* "QUICK-LOOK" ANALYSIS DURING FLIGHT
« DEFINITIVE ANALYSIS BY P| AT HOME BASE
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